
Creating	Sonifications	with	Astronify	(Nonvisual	Data
Science	Workshop	Series)
(0:00	-	5:25)

All	right,	well,	welcome	all	to	the	last	workshop	in	the	non-visual	data	science	workshop
series.	My	name	is	Patrick	Smyth.	I	am	the	chief	learner	at	IOTA,	and	so	this	is	the	last
workshop	in	our	non-visual	data	science	workshop	series,	so	workshop	number	five.

It's	 our	 second	 workshop	 on	 sonification,	 and	 Sarah	 Kane	 is	 going	 to	 be,	 you	 know,
leading	us	in	a	little	further	exploration	of	making	data	representations	with	sound	rather
than	sight,	and	I	just	want	to	go	through	a	few	administrative	items,	and	then	we'll	get
started.	So	we	will,	I'm	in	the	final	stages	here.	I'm	waiting	just	to	hear	about	something
about	the	server	setup,	but	we're	going	to	have	a	mailing	list	set	up	for	people	getting
started	with	data	 science	with	a	visual	 impairment,	 so	 I'm	going	 to	 send	out	an	email
when	that's	all	set	up.

You'll	see	that	 in	an	email	that	will	go	out.	Hopefully,	 I'll	have	it	done	by	the	recording
email	that	will	go	out	tomorrow,	most	likely,	but	if	not,	it'll	be	later	in	the	week.	It'll	be	its
own	separate	email.

We	also	have	a	couple	of	events	coming	up	that	I'd	like	to	kind	of	highlight	to	you,	so	I'd
recommend	keeping	an	eye	on	the	email	following	this,	but,	you	know,	one,	for	example,
is	Tony	Fast,	who's	been	coming	to	these	workshops	and	is	doing	an	event	with	Space
Telescope	Science	 Institute	 related	 to,	 you	 know,	basically	 the	 topics	 that	we're	doing
here.	 He's	 developing	 a	 accessible	 version	 of	 Jupyter	 Notebooks	 and	 may	 be	 an
interesting	time	to,	you	know,	if	you're	interested	in	that,	it	sounds	good.	He	may	need
some	 testers	and	so	on	 in	 the	coming	weeks	and	months	 to	 try	out	his	prototype,	 so,
and,	you	know,	the	usual,	I'd	just	like	to	thank	a	couple	of	people.

We	will,	our	helpers	are	in	the	room,	so	we	have	Elizabeth	and	Alex	in	the	room	today.	I
will	also	be	here	helping	out,	so	 if	you	have	any	questions,	 just	drop	 them	 in	 the	chat
and	one	of	us	will	 respond	 to	you,	and	you	can	either	message	myself,	 Patrick	Smith,
Alex	Ogden,	or	Elizabeth	Sola	privately	 if	you	prefer,	or	you	can	 just	ask	your	question
publicly	and	we'll	manage	it	that	way.	 I'd	also	like	to	thank	Pandas	and	NumFOCUS	for
hosting	 these	workshops	and,	you	know,	and	especially	Patrick	Hofler,	who's	a	Pandas
core	developer,	who	sort	of	helped	us	put	this	series	together.

And	finally,	there's	one	small	sort	of	technical	item	that	a	couple	of	people	have	emailed
me	about	one	specific	thing.	So,	in	the	second	and	third	workshops,	we	learned	how	to,
maybe	even	as	far	back	as	the	first,	we	learned	how	to	use	the	IPython	magic	command
save,	so	%save	and	%load,	and	so	people	were	not	really	having	so	much	trouble	with
the	 save	 command,	 but	 then	 when	 they	 were	 loading	 their	 files,	 there	 was	 some
difficulty	with	the	behavior	that	is	experienced	when	you	load.	So,	the	part	that	I	think	I



didn't	explain,	and	 I'm	going	 to	update	 the	 tutorial,	 I	have	an	 issue	open,	 so	 I	will	not
forget	that,	but	the	extra	step	that	we	sort	of	left	out	is	that	when	you	do	the	%load	and
the	file	name	to	load	in	your	code,	then	once	that	successfully	executes,	what	it	basically
does	is	it	kind	of	like	almost	like	types	in	all	the	code,	so	it's	in	a	giant	block	in	IPython,
and	in	order	to	run	that	giant	block,	so	you	may	hear	different	things,	you	may	hear	the
code	 that	 you	 imported,	 you	 may	 hear	 dot,	 dot,	 dot,	 that's	 what	 some	 people	 were
hearing,	but	basically	 in	order	to	sort	of	complete	the	 loading	process,	you	need	to	hit
the	enter	button	twice,	okay,	and	once	that	happens,	it	basically	is	as	if	you	typed	in	all
of	that	code	yourself,	and	it	runs	each	line	separately,	and	once	that's	done,	if	you	want,
you	can	clear	the	terminal	with	control	L,	and	then	you	should	have	a	nice	clear	session
with	all	 the	variables	and	so	on	available	to	you	that	you	had	before,	and	there's	also,
some	people	were	asking	about	how	to	store	specific	variables	and	so	on	for	next	time,
so	for	example,	if	you	want	to	store	a	data	frame,	and	for	that,	I	would	take	a	look	at	the
%store	 magic	 command,	 so	 essentially,	 you	 could	 do	 a	 %store	 and	 the	 name	 of	 a
variable,	and	it	will	save	it	for	you	to	load	it	in	in	a	future	session,	and	I	think	it's	%storer-
r	or	something	like	that	will	allow	you	to	load	variables,	so	that's	something	people	seem
to	 have	 a	 lot	 of	 interest	 in,	 and	 a	 few	people	were	 emailing	 about	 it,	 so	 I	 thought	 I'd
cover	it.

(5:27	-	7:32)

All	right,	so	I	think	that's	everything	administratively,	and	of	course,	you	know,	I	guess	I'll
maybe	spill	a	little	bit	now	since,	you	know,	I	think	people	are	most	engaged	right	at	the
beginning,	 and	 so	 I'll	 just	 say,	 you	 know,	 I'll	 also	 say	 this	 at	 the	 end,	 but	 these
workshops,	you	know,	it's	been	a	real	privilege	to	put	together	these	workshops.	We	will
be	 creating	a	website	 specifically	 for	 the	 curriculum,	 so	 it	won't	 always	be	on	GitHub.
Once	 it	 kind	of	 stabilizes,	 once	 it's	 all	 finished,	we'll	move	 it	 to	 its	 own	website,	 and	 I
would	 ideally	 like	 to,	 you	 know,	 turn	 it	 into	 a	 larger	 resource	 with	 some	 of	 the
suggestions	 and	 so	 on	 that	 have	 been	 provided,	 and	 of	 course,	 this	 is,	 you	 know,	we
have	10	hours	with	you.

We	covered	a	certain	amount	of	material,	 but	obviously,	 there's	a	 lot	 to	data	 science.
There's	a	 lot	more	 to	possibly	 cover,	 and	 so,	 you	know,	 I	 hope	 to	do	more	with	 these
materials,	but	there	will	be,	at	the	very	least,	what	we've	done	so	far	will	be	available	in
a	sort	of	a	website	resource.	When	that	is	available,	I	will	send	out	an	email	about	that,
and	I	mean,	I	would	also	say	if	you,	you	know,	we're	all	part	of	the	blindness	community.

We're	all	part	of	the	VI	community.	If	you	are,	you	know,	in	touch	with	specific	blindness
organizations,	I	mean,	I'm	in	touch	in	conversation	with	some	people	as	well,	but	if	you
think	 that,	 you	 know,	 you	 have	 contact	 with	 someone	 in	 an	 organization	 that	 you've
enjoyed	these	sessions	and	that	you	would	like	to	see	more	of	this	kind	of	work	happen,
either	in	terms	of	creating	resources	or	in	terms	of,	you	know,	teaching	workshops	and
so	on,	then,	you	know,	feel	free	to	reach	out	to	them	and	say,	hey,	this	was	really	good.



We	would	like	to	see	more	of	it,	and	then,	you	know,	and	hopefully,	I	would	love	to	see
the	major	 blindness	 organizations	 put	 some	more	 resources	 specifically	 behind	 these
kinds	of	more,	you	know,	more	modern	skills	that	I	think	are	important	for	the	blindness
community.

(7:34	-	9:27)

Another,	you	know,	and	another	thing	that	we	are,	I	mean,	some	conversation	with	some
organizations	 is,	 you	 know,	maybe	 having,	 like,	 some	 small	 grants	 or	 small	 prizes	 for
infrastructure	development	and	so	on,	so	that	would,	you	know,	I	really	think	that	some
of	 the	 big	 organizations	 should	 get	 behind	 some	 of	 this	work.	 If	 you	 have	 contacts	 in
those,	just	reach	out	to	me.	Drop	me	a	line	or	put	a	word	in	someone's	ear,	you	know,
and	have	them	reach	out	to	me,	so	I,	you	know,	and	I	also	just	want	to	thank	all	of	you
participants.

I	 mean,	 you	 guys	 really	 come	 out	 in	 large	 numbers,	 you	 know,	 and	 there's	 a	 huge
number	of	people	who	are	 following	along	asynchronously	as	well	and	reaching	out	by
email	every	week	and	everything	like	that,	so	there's	actually	kind	of	a	hidden	group	of
blind	 folks	who	 are	 really	 interested	 in	 learning	 data	 science	 that	 is	 even	 larger	 than
we're	seeing	in	these	rooms,	which	is,	and	there	are	pretty	big	crowds	in	these	rooms,
too,	 so	 thank	you.	 I	 just	want	 to	 thank	you	all	 for	 coming	out,	 for	 learning.	 I	 know	 it's
challenging,	 but	 it's	 been	 great	 to	 connect	 and	 to	 see	 this,	 you	 know,	 hopefully	 it's	 a
start	of	something	cool,	so	all	right,	that's	enough	spieling.

Sarah,	do	you	want	to,	I'll	introduce	Sarah	Kane.	She	is	a	PhD	student	in	astronomy	and
astrophysics	 at	 Cambridge	 and	 a	 Marshall	 fellow,	 and	 she's	 going	 to	 be	 leading	 our
second	 workshop	 right	 now	 on	 sonification,	 so	 Sarah,	 it's	 enough	 talking	 from	 me.
Thanks,	Patrick.

All	right.	Hi,	everyone.	Excited	to	get	started	again.

I'll	share	my	screen.	I	have	share	my	screen.	Hello.

All	righty.	Make	sure	share	sound	is	on,	and	we	are	good	to	go.	Before	we	begin,	I	 just
want	to	mention	off	my	camera,	because	someone	had	the	suggestion	that	that	might
help	with	some	of	the	difficulties	we	had	last	week,	so	let's	hope	for	the	best.

(9:28	-	11:03)

Apologies	if	anyone	is	low	vision	or	sighted	here.	If	you	don't	appreciate	me	being,	you
know,	 just	 a	 square,	 sorry,	 but	 we're	 going	 to	 give	 this	 a	 try.	 On	 the	 topic	 of	 audio
difficulties,	I	know	we	had	rather	extensive	audio	difficulties	last	week.

I	just	want	to	mention	that	there	is	a	nice	fresh	recording.	I	re-recorded	the	tutorial	from
last	week,	 so	 if	 you	 found	 last	week	 a	 little	 difficult	 to	 follow	 because	 of	 some	 of	 the



audio	 difficulties,	 I	 highly	 recommend	 you	 go	 check	 out	 the	 new	 recording,	 especially
right	 at	 the	 end	when	we	 listen	 to	 all	 of	 those	 sonified	 shapes	 that	we	made.	 I	 think
that's	 the	most	 informative	part	of	 the	 tutorial,	 so	 I	highly	 recommend	going	 to	check
that	out	if	you	are	interested.

I'll	 also	mention	 that	we	 still	 seem	 to	 be	 having	 some	 audio	 difficulties	where	 sounds
from	the	terminal	do	not	seem	to	like	to	play	through	Zoom	that	we	can	tell,	so	I'll	just
tell	you	in	advance	that	all	the	sonifications	for	this	week	I	have	pre-prepared	as	audio
files,	so,	you	know,	when	I'll	have	you	guys	typing	sonification.play	or	whatever	we	name
it	to	get	things	going,	I	will	click	away	to	an	audio	file	and	play	the	sonification	for	you
from	 there,	 and	 hopefully	we	will	 be	 on	 our	merry	way.	 All	 right,	 now	 I'm	 really	 done
spieling.	Let's	see.

I'm	going	to	turn	NVDA	speech	back	on.	"Speech	mode	B.	Speech	mode	talk."	And	I	just
want	to	confirm,	can	you	hear	that	okay?	Yes,	no?	Yes.

Yes,	we	can.	Thank	you.	All	right.

(11:03	-	11:18)

Oh,	and	I	don't	hear	that	active	speaker	alert,	so	maybe	the	video	off	is	the	answer.	All
righty.	So,	as	we	always	do,	I'm	going	to	ask	you	to	begin,	please,	by	opening	Anaconda
Prompt.

(11:18	-	14:43)

You	can	do	 that	by	hitting	 the	Windows	key	and	 then	 typing	Anaconda	Prompt,	and	 it
should	 be	 the	 first	 result	 that	 comes	 up	 after	 that.	 And	 once	 you	 are	 in	 Anaconda
Prompt,	we	will	 start	 IPython	by	 typing,	 as	we	always	have,	 IPython,	 all	 lowercase,	 all
one	word.	"I-P-Y-T-H-O-N.

Python	3.11.5	packaged	by	Anaconda	Incorporated."	All	right.	I	think	we've	heard	that	a
bunch	of	times.

I	wanted,	you	know,	us	to	hear	the	Python	version	one	more	time,	but	we	probably	don't
need	 to	 listen	 to	 that	whole	 thing.	All	 right.	 So,	 now	we	are	 in	 our	 interactive	 IPython
environment,	and	we	are	ready	to	get	started.

The	exciting	news	is,	today,	we	are	going	to	sonify	some	real	data.	What	I	have	prepared
for	you	is	a	CSV	file	of	temperature	data.	This	is	real	data,	real	temperatures	from	cities
around	the	world,	and	also	some	rainfall	data.

We'll	 look	at	that	data	 in	detail	before	we	sonify	 it,	but	 in	order	to	actually	 import	that
data,	we	are	going	 to	need	 to	 import	our	 favorite	packages	 that	we've	used	all	along.
We're	going	to	import	NumPy	and	import	Pandas.	Hopefully,	this	is	a	familiar	procedure



by	now.

I'm	going	 to	 start	 in	 that	 in	one	 line	by	 typing	 import	NumPy.	 "I-M-P-O-R-T."	So,	 that's
import	space	NumPy.

"N-U-M-P-Y."	All	right.	And	it's	telling	me	I'm	on	the	next	line	already.

We	 don't	 expect	 any	 output	 from	 importing	 something,	 and	 I'm	 going	 to	 type	 import
Pandas	like	the	bear.	"I-M-P-O-R-T	space	P-A-N-D-A-S	in	three."	All	right.

I've	typed	import	Pandas.	Hit	enter.	And	this	is	the	moment	where	I'm	going	to	ask	one
of	the	helpers.

I	think	Alex	or	Elizabeth	has	it	at	the	ready	to	copy	and	paste	two	lines	of	code	in.	This	is
going	to	be	the	URL	that	we're	using,	and	then	it's	going	to	be	df	equals	Pandas.readcsv,
that	 URL,	 and	 the	 index	 column	 equals	 zero.	 Basically,	 this	 is	 saving	 us	 that	 step	 of
typing	out	the	URL.

So,	I	highly	recommend	you	go	and	copy	and	paste	that	from	the	chat.	It's	rather	a	long
URL	link.	And	then	it's	just	our	very	familiar	Pandas.readcsv.	I	myself	am	going	to	copy
and	paste	it	in	as	well	because	it's	a	long	URL.

All	right.	It	just	read	the	very	last	bit	of	what	I	just	copy	and	pasted	in.	But	the	important
thing	is,	again,	to	remember	that	we're	this	df	equals	Pandas.readcsv,	that	URL.

So,	what	we're	doing	is	we're	making,	as	we	always	do,	a	Pandas	CSV	from	the	data	in
that	or	not	a	Pandas	CSV,	a	Pandas	data	frame	from	the	data	that's	saved	at	that	URL,
and	we're	calling	it	df.	And	I'm	just	going	to	hit	enter.	It	might	take	a	second.

About	a	second	exactly.	You	can	hear	it	says	in	four.	We're	on	to	our	next	line.

(14:44	-	15:02)

Now,	the	data	is	all	already	there.	Unlike	last	week,	we're	not	going	to	sort	of	craft	any	of
it	 ourselves.	 But	 I	 am	 very	 strongly	 of	 the	 opinion	 that	we	 should	 not	 be	 sonifying	 or
visualizing,	representing	our	data	in	any	way	until	we	actually	take	a	look	at	that	data.

(15:02	-	16:29)

And	all	 you	 really	 know	about	 this	 data	 is	 that	 it's	 something	 to	do	with	 the	weather.
Like,	I've	mentioned	something	about	temperature.	You	don't	really	know	what's	in	here.

So,	 I	don't	know	about	you,	but	my	very	first	question	 is,	what	 is	actually	 in	this	data?
What	are	the	columns?	And	so,	you	might	recall	from	Patrick's	lessons	that	we	can	check
on	the	columns	in	the	data	frame	by	doing	df.	That's	what	we've	named	that	data	frame
and	those	lines	I	had	you	copy	and	paste.	So,	we'll	do	df.



And	then	dot.	Whoops.	It	wants	to	suggest	something	I've	typed	before.

I	don't	want	to	do	that.	I	want	to	do	df.columns.	"C-O-L-U-M-N-S."	That's	df.columns	and
hit	enter.

I'm	going	to	tell	you	now	that	this	is	going	to	be	a	rather	long	output	because	there	are
13	columns	in	this.	So,	we're	going	to	listen	to	them	all	the	way	through	because,	again,
we	want	to	know	all	the	columns	in	our	data	frame	if	we're	using	the	thing.	"Out	four.

Index.	Year.	Month.

Day.	New	York	City	temp.	Philadelphia	temp.

Pittsburgh	temp.	Orlando	temp.	Austin	temp.

Seattle	temp.	Delhi	temp.	Delhi	rain	inches.

Delhi	temp	model	one.	Delhi	temp	model	two.	Dtype	equals	object.

In	 five."	 All	 right.	 So,	 what	 columns	 do	 we	 have	 here?	 We	 have	 three	 columns	 that
specify	the	date.

(16:29	-	18:32)

That	is	the	year,	month,	and	day	at	which	we	have	our	data.	Then	we	have	a	whole	slew
of	columns	with	the	temperature,	presumably	daily	temperature,	in	a	bunch	of	different
cities.	New	York	City,	Philadelphia,	Pittsburgh,	Delhi,	India,	blah,	blah,	blah.

We're	not	going	to	use	all	of	those	columns.	But	I	wanted	to,	A,	give	you	a	larger	data
frame	to	handle	because	this	 is	often	how	data	comes.	And,	B,	because	 if	you	want	to
play	around	with	more	data,	then	it's	available	for	you	after	this	tutorial.

You	already	have	 something	you	can	 sort	of	 test	and	mess	around	with.	So,	plenty	of
data	available	for	you.	If	you're	interested	in	where	I	got	this	data	from,	it's	all	linked	on
the	curriculum	online.

So,	 if	 you're	 curious,	 feel	 free	 to	 check	 it	 out.	 It	 is	 from	 two	 different	 sources	 that	 I
curated	and	put	together.	There	was	a	little	bit	of,	like,	processing	that	I	did	to	sort	of	get
it	in	a	format	that	would	be	roughly	convenient	for	us	to	use.

We	have	that	Delhi	rain	inches	column.	That's	the	daily	rain	in	Delhi,	India,	in	inches,	as
the	name	says.	And	then	those	 last	two	columns,	the	Delhi	 temp	model	one	and	temp
model	two,	those	are	actually	columns	I	created.

And	we'll	 get	 into	 those	a	 little	bit	 later	 if	we	have	 the	 time.	But	essentially,	 they	are
predictions	 for	 the	 temperatures	 in	 Delhi,	 India.	 And	 one	 of	 them	 is	 intended	 to	 be	 a
good	prediction,	and	one	of	them	is	intentionally	quite	a	bad	prediction.



But	we	will	get	 into	 that	 later.	All	 right.	So,	now	we	know	 roughly	what	 is	 in	 this	data
frame.

My	next	question	is,	like,	how	big	is	it?	I've	told	you	there	are	13	columns,	but	I	just	want
to	print	out	the	whole	shape,	you	know?	I	mean,	if	I	weren't	here	to	tell	you	that	I	know
there	are	13	columns,	I	don't	know	about	you,	but	I	wouldn't	want	to	sit	and,	like,	count
the	columns.	And	I	also	want	to	know	how	many	rows	there	are,	how	many	days	of	data
are	there.	So,	I'm	going	to	do,	as	Patrick	taught	us,	df.shape.	And	I'll	hit	enter.

(18:37	-	18:57)

All	right.	So,	there	are	9,265	rows	of	data.	That	is	each	of	those	I'll	tell	you	is	one	day	of
data.

And	13	 columns.	 I	 can	 tell	 you	 right	 now	 that	 because	 I've	handled	 this	 data	 already,
that's	about	15	years'	worth	of	weather	data	in	this	CSV.	So,	it's	rather	a	lot.

(18:58	-	19:55)

But	my	next	question,	after	knowing,	well,	this	is	a	rather	large	file,	is,	all	right,	but,	like,
what	dates	does	it	actually	run	from?	And	the	way	I	can	find	out	is	by	indexing	the	first
and	 last	 columns.	 I'm	 going	 to	 assume	 this	 data	 runs	 in	 chronological	 order.	 First,
because	shuffling	up	the	dates	would	be	chaos.

And	I	have	yet	to	see	a	data	file	that	does	that.	But	B,	because	I	have	already,	you	know,
handled	this	data.	So,	I'll	tell	you	it	runs	in	chronological	order.

So,	if	we	check	the	first	day	or	the	first	row	of	data,	that	should	be	the	first	day	of	data.
So,	we	can	get	the	first	date.	And	if	we	check	the	last	row	of	our	data	frame,	that	will	be
the	last	date	of	data.

So,	we	can	know	when	our	data	starts	and	ends.	And	again,	Patrick	taught	us	how	to	get
the	how	to	index	by	row	number.	That's	going	to	be	DF.

(19:55	-	21:10)

DF.IL.ILOC.	So,	ILOC,	LOC	for	location,	and	I,	 index,	because	we're	indexing	by	number.
Then	 it's	 going	 to	 be	 open	 square	 bracket.	 Zero.	 Right	 bracket.	 Not	 parentheses,
brackets.	Why	is	it	a	zero?	Well,	Python	likes	to	number	starting	from	zero.

So,	if	we	do	DF.ILOC	brackets	one,	we're	actually	going	to	get	the	second	row.	All	right,
let's	hit	enter.	Out	six.

Year	1995.000000.	Month	1.000000.	Day	1.000000.	I'm	reading	all	of	the	values	in	that
row.	I	only	care	about	the	first	three,	the	year,	month,	and	day,	because	that's	the	date
that	I	care	about.	Annoyingly,	they're	in	decimal	format,	just	because	that's	how	this	file



is	read	in.

It's	read	in	as	floats,	you'll	recall,	we	call	them.	But	I	can	tell	that	the	year	is	1999,	the
month	is	one,	and	the	day	is	one.	So,	our	data	starts	on	January	1st,	1999.

(21:10	-	21:25)

All	right.	When	does	our	data	end?	So,	what	is	the	range	of	dates	for	our	data?	Well,	then
I'm	going	to	do	DF.ILOC.	Open	bracket.	So,	the	same	thing	as	the	line	before	so	far.

(21:26	-	22:54)

Left	bracket.	Now,	I	could	do	what?	What	was	the	length	of	the	data	frame?	9265.	I	could
type,	because	I	know	how	many	rows	there	are	for	the	last	one.

But	 that	 requires	me	 remembering	how	many	 rows	 there	are	 in	our	data	 frame.	So,	a
nice	little	shortcut	is	that	if	you	want	to	index	the	last	row	of	the	data	frame,	you	can	just
type	negative	1.	Dash	1.	Dash	1,	negative	1.	So,	it's	DF.ILOC,	open	bracket,	negative	1,
close	bracket.	Right	bracket.

And	the	fun	thing	is,	if	you	do,	for	instance,	negative	2,	that'll	give	you	the	second	to	last
row,	 negative	3,	 third	 to	 last	 row,	 so	 on	 and	 so	 forth.	 This	 is	 another	 sort	 of	 Pythonic
numbering	thing.	Maybe	other	programming	languages	do	it	as	well.

I	don't	know.	Don't	quote	me	on	that.	I	only	know	Python.

"Out	 7.	 Year	 2020.000000.	Month	 5.000000.	Day	 13.000000."	 All	 right.	 And	 I'll	 stop	 it
again	 after	 the	 day,	 because	 I'm	 not	 interested	 in	 hearing	 how	 hot	 it	 was	 in	 Austin,
Texas,	on,	as	we	now	know,	May	13th,	I	believe	it	was,	of	2020.	So,	we	have	just	about
15	years	of	data	in	here.

So,	that's	great.	Now	we	know	how	large	our	data	frame	is.	We	know	the	time	range.

(22:54	-	24:26)

We	know	roughly	what	sort	of	data	is	in	it.	Cool.	We're	getting	a	good	picture	of	things	in
this	data	frame.

And	then	the	last	thing	I'm	going	to	want	to	do,	before	I	sodify	things,	is	actually	take	a
look	at	one	of	the	columns.	I'm	going	to	do	Philadelphia,	because	that's	where	I	went	to
undergrad,	and	I	love	Philadelphia,	and	I	know	roughly	what	the	weather	should	be	like
in	 there,	 like	 in	 the	 city	 of	 Philadelphia.	 And	 I	 just	 want	 to	 check	 on	 the	 data	 in	 the
Philadelphia	column	first,	to	make	sure	nothing	seems	funky.

Second,	 you	 know,	 I	 don't	 even	 know	 right	 now	whether	 this	 is	 in	 degrees	 Celsius	 or
degrees	Fahrenheit,	which	is,	you	know,	a	little	problematic	because	there	are	no	labels



here,	 like	no	units.	But	 if	 I	 take	a	 look	at	 the	data,	 I	can	probably	guess	based	on	 the
numbers	we	get	 out	whether	 it's	 in	 degrees	Celsius	 or	 Fahrenheit,	 and	 I	would	 like	 to
know	that.	All	right.

So,	the	way	I	can	do	this	is,	if	you	recall	from	the	list	of	column	names,	and	no	worries	if
you	 don't	 because	 I'll	 tell	 you.	 The	 temperature	 in	 Philadelphia,	 that	 column	 name	 is
called	Philadelphia	underscore	temp.	And	so	following	the	syntax	that	Patrick	taught	us,
if	we	want	 to	say	check	 the	average	 temperature	 in	Philadelphia,	 then	 I	can	do	df	dot
Philadelphia	That's	going	to	be	P-H-I-L-A-D-E-L-P-H-I-A.

(24:27	-	24:44)

You	know,	before	I	did	university	in	Philadelphia,	I	actually	had	a	really	hard	time	spelling
that	 city.	 All	 right,	 so	 that's	 df.philadelphia	 underscore	 temp,	 T-E-M-P.	 So	 this	 is	 just
calling	the	Philadelphia	temp	column	from	df.

(24:44	-	24:56)

And	then	I	just	want	the	mean	attribute,	so	dot	mean,	M-E-A-N.	"Dot	M-E-A-N."	And	then
open	parentheses,	close	parentheses,	just	like	Patrick	taught	us.

(24:56	-	25:15)

"Left	paren,	right	paren."	All	right,	and	let's	hit	enter.	Out	8,	56.41700485698867,	in	9.
All	 right,	so	the	average	temperature	 in	that	Philadelphia	temperature	column	is	about
56	degrees.

(25:15	-	25:28)

That	tells	me	for	two	things.	First	of	all,	having	spent	time	in	Philadelphia,	sounds	about
right	 to	 me.	 It	 sounds	 about	 right	 if	 it's	 in	 degrees	 Fahrenheit,	 because	 if	 that's	 in
degrees	Celsius,	Philadelphia	is	on	fire.

(25:28	-	25:37)

Which	 I	 certainly	hope	 it	 isn't,	 because	 I	would	 like	 to	go	back	 to	visit.	 So	 I	 know	 two
things.	First	of	all,	from	a	rough	analysis,	that	average	seems	correct.

(25:38	-	25:52)

And	also,	I	now	know	our	units	are	in	degrees	Fahrenheit.	I	can	also,	and	for	the	sake	of
thoroughness,	 I	 could	 also	 check	 the	 max.	 That's	 going	 to	 be	 the	 same	 line	 we	 just
typed,	except	instead	of	dot	mean,	it'll	be	dot	max.

(25:52	-	26:26)

So	we	can	do	df,	dot	Philadelphia,	Philadelphia,	underscore	temp,	dot	max,	"left	paren,



right	paren,	out	9,	92.9,	in	10."	All	right,	so	the	maximum	temperature	we	have	recorded
for	Philadelphia	is	92.9	degrees	Fahrenheit.	I'll	tell	you	for	certain	that	it	definitely	gets
hotter	than	that	in	Philadelphia.

(26:26	-	26:44)

So	I	would	be	scratching	my	head	a	little	bit	about	this	and	feeling	some	concern.	Except
for	 the	 fact	 that	 I	believe	that	 this	 is	actually	 the	average	temperature	over	 the	whole
day.	So	if	you	consider	the	fact	that	it's	like	cooler	in	the	night,	yeah,	I	can	imagine	that
the	hottest	day	in	Philadelphia	is	on	average	92.9	degrees.

(26:45	-	27:11)

For	the	sake	of	completeness,	let's	look	at	the	minimum.	"df,	dot	P-H-I-L-A-D-E-L-P-H-I-A,
line,	 T-E-M-P,	 dot	 M-I-N,	 left	 paren,	 right	 paren."	 So	 that	 is	 df,	 dot	 Philadelphia,
underscore	temp,	dot	min,	open	parenthesis,	close	parenthesis.

(27:12	-	27:32)

That	is	the	same	line	we	have	been	typing	except	now	instead	of	min	or	max,	it	is	min.
And	let's	just	see	what	we	get.	"Out	10,	9.4,	in	11."	9.4	degrees	Fahrenheit.	Yeah,	that
sounds	right	to	me.	For	you	Europeans,	that's	going	to	be,	I	don't	know,	degrees	Celsius.

(27:32	-	27:37)

I'm	going	to	bet	on	like	negative	10	Celsius,	something	like	that.	Miserable.	Miserable	is
the	temperature.

(27:38	-	27:42)

All	right.	We've	explored	our	data	frame.	We	know	what's	in	it.

(27:42	-	27:48)

We	know	like	the	columns.	We	know	the	date	ranges.	We	know	actually	the	type	of	data
we	have	in	here.

(27:48	-	28:00)

We've	checked	the	column	we're	going	to	sonify	first,	Philadelphia,	and	made	sure	that
everything	seems	to	be	 in	order	 there.	 I	 think	we're	good	to	go.	Let's	get	 into	actually
sonifying.

(28:00	-	28:22)

Now,	 inherently	 before	 we	 visualize	 something,	 or	 visualize	 or	 sonify,	 so	 before	 we
represent	 data,	 there's	 always	going	 to	 be	 some	 legwork	we	have	 to	 do.	 The	 legwork



we're	going	to	have	to	do	here	is	two	steps.	First,	what	we're	going	to	want	to	sonify	is
the	Philadelphia	temperature	versus	time	or	versus	our	date.

(28:23	-	28:33)

However,	right	now	our	date	is	spread	across	three	columns.	It	is	year,	month,	day.	That
is	going	to	be	really	difficult.

(28:34	-	28:41)

Actually,	 that's	going	 to	be	 impossible	 for	a	sonify	 to	parse.	Like	 those	 three	columns,
that's	not	going	to	work.	We	don't	want	that.

(28:41	-	28:56)

Why	did	I	leave	it	this	way?	Well,	first	of	all,	this	is	a	format	you'll	often	see	in	data.	It's
the	way	the	data	originally	came,	so	I	want	us	to	be	able	to	work	around	it.	What	are	we
going	to	do	is	we're	going	to	make	a	new	column	in	our	data	frame.

(28:56	-	29:13)

I'm	going	to	call	this	time	step,	and	this	is	going	to	basically	be	the	number	of	days	since
our	data	began.	So	the	 first	day,	 January	1st	of	1995,	will	be	zero.	 January	2nd	will	be
one.

(29:13	-	29:30)

January	3rd	will	be	two,	and	so	on	and	so	forth.	This	will	now	act	in	our	sonification	as	the
time	column	because	those	nice	just	numbers	will	be	easy	for	a	sonify	to	parse.	And	in
the	sonification,	a	sonify	doesn't	really	care	about	the	value	of	the	time.

(29:30	-	29:45)

It	cares	about	the	distance	between	times,	so	what	I'll	call	the	time	step.	That's	why	I'm
calling	this	column	the	time	step	column.	It's	because	say	we	took,	you	know,	the	data
every	day,	and	then	suddenly	we	took	it,	oh,	a	week	later,	so	there's	a	larger	gap.

(29:46	-	30:10)

That	could	be	a	problem,	but	here	the	data	is	taken	at	really	regular	intervals,	just	once
a	day	for	about	15	years.	So	we	can	make	sort	of	a	fake	time	column,	and	a	sonify	will
treat	it	just	the	same,	and	it	will	work	out	very	well	for	us.	So,	Patrick	already	taught	us
how	to	make	a	column	like	this,	and	I	will	refresh	your	memory	if	you	don't	recall.

(30:10	-	30:24)

First	we're	going	to	call	the	column,	though	we	haven't	made	it	yet.	That's	going	to	be



df,	open	bracket.	It's	trying	to	complete	things	for	me.

(30:24	-	30:27)

I'm	not	there	yet.	Give	me	time.	All	right.

(30:28	-	30:48)

Df,	 open	 bracket,	 quotation	mark,	 or	 like	 little	 tick	mark.	 Then	 it's	 time	 step,	 all	 one
word,	so	time	step,	T-I-M-E-S-T-E-P.	Time	step,	close	quotation	mark,	close	bracket.

(30:49	-	31:08)

So	this	 is	a	slightly	different	syntax	 from	the	one	you	were	using	with	Patrick	 to	call	a
column.	Here	we're	using	brackets	and	quotation	marks	instead	of	the	dot	format,	which
is,	I	think,	maybe	a	little	quicker	to	type.	This	format,	in	my	experience,	just	works	better
for	creating	a	new	column,	so	we	are	making	a	new	column	of	the	data	frame.

(31:09	-	31:18)

There	 isn't	already	a	column	called	time	step.	We're	creating	a	new	one.	 I	 found	when
you	do	df	dot	time	step	to	make	a	new	column,	it	throws	an	error.

(31:18	-	31:45)

So	this	one	time	we'll	use	this	different	syntax	here	to	call	the	column.	So	that's	df,	open
square	 bracket,	 open	 quotation	 mark,	 time	 step,	 close	 quotation	 mark,	 close	 square
bracket,	space,	equals,	space.	And	then	the	function	we're	going	to	use	here	is	the	one
that	Patrick	taught	us,	pandas	dot	range	index,	P-A-N-D-A-S	dot.

(31:45	-	32:23)

So	that's	pandas	dot.	The	R	in	range	is	capital	R.	So	that	was	a	capital	R,	A-N-G-E,	then
index,	capital	I.	So	capital	R	in	range,	capital	I	in	index,	"N-D-E-X."	And	it's	all	one	words,
so	pandas	dot	range	index,	open	parenthesis.	Then	it's	going	to	be	start	equals	zero.	"S-
T-A-R-T	equals	zero."	So	we've	opened	quotation	marks,	not	open	quotation	marks,	open
parenthesis,	start	equals	zero.

(32:23	-	32:37)

That	means	the	start	of	our	steps	will	be	zero.	So	remember	that's	going	to	mean	that
January	1st	of	1995	is	time	step	zero,	comma,	then	space.	Then	I'm	going	to	do	stop.

(32:37	-	32:49)

"S-T-O-P	equals."	Stop	equals,	I'm	going	to	type	L-E-N.	"L-E-N."	Then	I'm	going	to	do	open
parenthesis.	"Left	paren."	D-F.



(32:49	-	33:08)

"D-F."	Close	parenthesis.	"Right	paren."	That	means	stop	at	the	length	of	our	data	frame.
In	this	case,	 that'll	be,	 I	 think,	what	was	 it?	9,625,	9,265.	Clearly,	 I	can't	remember	off
the	top	of	my	head	exactly	the	number	of	rows	in	our	data	frame.

(33:08	-	33:27)

So	 the	 L-E-N,	 open	 parenthesis,	 close	 parenthesis,	 with	 D-F	 in	 the	 middle,	 will	 just
automatically	give	us	the	number	of	rows	in	data	frame.	And	that's	because	I	want	that
last	date,	which	was	what?	May	13th	of	2020.	Ah,	2020.

(33:28	-	33:48)

What	a	year.	May	13th	of	2020,	I	want	that	to	be	9,265	or	whatever	the	last	row	index	is
in	our	time	step	column.	So	that's	going	to	be	stop	equals	L-E-N,	open	parenthesis,	D-F,
close	parenthesis,	comma.

(33:49	-	33:58)

Comma.	 And	 then	 I'm	 going	 to	 type	 space.	 "Space."	 Step	 equals	 one.	 "S-T-E-P	 equals
one."	Step	equals	one.

(33:59	-	34:07)

So	just	increase	in	steps	of	one.	So	January	2nd	should	be	day	one,	January	3rd,	day	two,
so	on	and	so	forth.	Again,	counting	from	zero,	as	Python	likes.

(34:09	-	34:17)

All	right,	hit	enter.	All	set.	If	we	want,	we	can	check	on	that	new	time	step	column.

(34:17	-	34:25)

So	maybe	I'm	going	to	do	D-F	dot	time	step.	Again,	it's	trying	to	guess	what	I	want.	It's
wrong.

(34:25	-	34:43)

D-F	dot	time	step,	and	I'm	going	back	to	this	more	familiar	syntax	of	D-F	dot	to	call	the
column.	T-I-M-E-S-T-E-P.	And	then	I'm	going	to	do	dot	head,	and	that	will	return	the	first
five	rows	of	this	time	step	column,	just	to	check	that	everything	seems	okay.

(34:43	-	35:21)

"Dot	 H-E-A-D,	 left	 paren,	 right	 paren."	 So	 that's	 D-F	 dot	 time	 step	 dot	 head,	 open
parenthesis,	 close	parenthesis,	 hit	 enter.	 "Out	12,	 0	0,	 1	1,	 2	2,	 3	3,	 4	4,	 name,	 time



step,	 type,	 in	 64,	 in	 13."	 All	 right,	 so	 you	might	 have	 heard	 0	 0,	 1	 1,	 that's	 basically
saying	the	0th	row	is	0,	the	1th,	the	1st,	sorry,	long	day.	The	1st	row	is	1,	the	2nd	row	is
2,	etc.,	etc.	That	all	sounds	good.

(35:21	-	35:37)

That's	exactly	what	we	wanted.	All	 right,	 I	 said	 there	was	 two	steps	we	needed	 to	get
this	 sonification	going.	And	 the	second	one	 is	you	might	 remember	 that	Astronify,	 the
sonification	package	we	use,	wants	its	data	in	an	AstroPy	table.

(35:38	-	35:46)

I'm	not	going	 to	dig	 into	 that	again.	 If	 you	don't	 remember	 that,	 I	 recommend	you	go
check	the	curriculum	or	the	recording	from	last	week.	I	explained	about	AstroPy	tables.

(35:46	-	36:23)

For	now,	we're	just	going	to	import	table	from	AstroPy	and	then	turn	our	data	frame	into
a	table.	All	right,	so	that's	going	to	be	to	first	import	the	necessary	class.	That's	going	to
be	 from	 AstroPy.table,	 so	 that's	 from	 space,	 A-S-T-R-O-P-Y.table,	 dot	 T-A-B-L-E,	 space,
import,	space.

(36:23	-	36:43)

And	then	this	is	going	to	be	table	again,	but	with	a	capital	T.	So	that's	capital	T,	table,	"T-
A-B-L-E,"	 from	 AstroPy.table,	 import	 table,	 "in	 14."	 All	 right,	 that	 went	 through	 no
problem.	Hopefully	it	did	for	you	as	well.

(36:43	-	37:00)

And	 then	 this	 is	 the	exact	 same	 thing	we	 ran	 last	week.	 I'm	going	 to	use	 the	AstroPy
table	 built-in	 function	 from	 underscore	 pandas.	 That	 will	 take	 a	 data	 frame,	 our	 data
frame	D-F,	and	return	a	table,	which	I'm	going	to	call	T-B-L.

(37:00	-	37:21)

So	that's	going	to	be	T-B-L,	space	equals,	space.	And	again,	 these	spaces	 just	make	 it
nicer	if	you're	going	to	pass	this	iPython	session	on	to	someone	sighted	who's	reading	it.
Or	I'm	low	vision,	so	I'm	reading	this	now,	and	I	find	it	easier	if	things	are	separated.

(37:21	-	37:33)

So	I'm	doing	it	for	my	own	sake	as	well.	But	if	you	don't	want	to	include	the	spaces,	you
don't	have	to.	So	that's	T-B-L	equals,	space	equals,	space,	capital	T,	table.

(37:34	-	38:00)



Sorry,	I	accidentally	typed	in	capital	A.	I	don't	want	a	capital	A,	just	capital	T.	Capital	T,
table,	 dot	 from	underscore	pandas,	 "dot	 F-R-O-M,	 line	 P-A-N-D-A-S."	Open	parenthesis.
Close	parenthesis.

(38:01	-	38:17)

So	that's	T-B-L	equals	capital	T,	table,	dot	from	underscore	pandas,	open	parenthesis,	D-
F,	 close	 parenthesis.	 Make	 an	 astropy	 table	 from	 the	 pandas	 data	 frame	 called	 D-F.
That's	our	data	frame,	and	call	it	T-B-L.

(38:18	-	38:31)

Hit	enter.	And	if	we	just	want	to	double	check	on	that	table	like	we	did	last	week,	we	can
type	T-B-L	dot	call	names.	That	is	C-O-L	names,	not	call	like	a	phone	call.

(38:31	-	38:47)

C-O-L	 like	the	beginning	of	columns.	So	there	 it	goes,	trying	to	again	make	it	this	time
it's	right.	T-B-L	dot	C-O-L,	N-A-M-E-S.

(38:47	-	39:04)

C-O-L	 names,	 and	 you'll	 notice	 this	 is	 slightly	 different	 from	 how	 we	 get	 columns	 in
pandas.	 Astropy	 tables	 are	 like	 similar,	 but	 not	 the	 same.	 Just	 different	 enough	 from
pandas	 data	 frames	 to	 make	 you	 have	 to	 Google	 every	 time	 when	 you	 want	 to	 do
something.

(39:05	-	39:33)

But	 this	will	 give	us	 the	 columns	 in	 table	T-B-L,	 just	 so	we	 can	 check	 that	 they're	 the
same	as	the	ones	 in	the	pandas	data	frame.	"Out	15,	year,	month,	day,	New	York	City
temp,	 Philadelphia	 temp,	 Pittsburgh	 temp,	 Orlando	 temp,	 Austin	 temp,	 Seattle	 temp,
Delhi	temp,	Delhi	rain	inches,	Delhi	temp	model	1,	Delhi	temp	model	2,	time	step	in	16."
All	right,	amazing.

(39:33	-	39:51)

We	have	all	 the	same	columns,	 including	 that	new	time	step	column	we	made.	Fancy,
fancy.	 All	 right,	 I	 am	 about	 to	 sonify	 this,	 but	 before	 I	 do,	 if	 there	 are	 any	 persistent
questions	before	we	get	sonifying,	please	do	let	me	know.

(39:52	-	40:17)

Now	is	a	good	time	for	that.	I	am	hearing	silence.	I'm	hoping	that	is	because	there	are	no
questions	and	not	because	my	audio	has	gone	out.

(40:18	-	40:34)



But	I	am	monitoring.	We	can	hear	you.	Ah,	excellent.

All	 right,	all	 right,	 that's	 the	that's	 the	better	option.	Sometimes	 I	 feel	 like	 I'm	 like,	 I'm
sitting	alone	in	a	little	room	I	feel	like	I'm	speaking	into	the	void,	you	know.	All	righty.

(40:35	-	40:49)

If	 I	 don't	 hear	 any	 questions,	 I'm	 going	 to	 keep	 on	 moving	 on	 but	 feel	 free	 to	 ask
questions	 in	 the	 chat,	 as	 always,	 we're	 going	 to	 get	 into	 the	 sonification.	 You	 might
notice	it	took	us	quite	a	few	minutes	to	get	to	this	point.	That	is	deliberate.

(40:50	-	40:58)

Data	 representations	 are	 only	 useful	 if	 you	 know	 what's	 going	 on	 in	 your	 data.	 So	 it
shouldn't	be.	I	think	I	see	people	do	this	a	lot.

(40:59	-	41:07)

Heck,	 I'm	 in	 the	habit	of	doing	 it,	 too.	You	 just	sort	of	 throw	either	a	visualization	or	a
sonification	at	your	data.	And	that	can	be	useful.

(41:07	-	41:16)

But,	you	know,	I	also	think	it's	useful	to	have	a	sense	of	what's	going	on	first.	So	now	we
know	what's	going	on	in	this	data.	That'll	make	the	sonification	a	lot	more	useful.

(41:17	-	41:30)

All	right,	 let's	get	 into	 it.	We're	going	to	 import	Sona	series	from	Astronify,	 just	 like	we
did	last	week.	So	that's	going	to	be	from	Astronify.

(41:30	-	41:48)

So	from	space.	A-S-T-R-O-N-I-F-Y.	Astronify.series.	dot	S-E-R-I-E-S.

(41:49	-	41:56)

From	Astronify.series,	space.	Import.	Space.

(41:57	-	42:06)

Sona	series.	That's	capital	S	in	SONI,	capital	S	in	series.	So	that's	capital	S-O-N-I.

(42:06	-	42:14)

S-O-N-I.	Capital	S.	...	And	then	the	rest	of	series.	E-R-I-E-S.

(42:14	-	42:39)



From	Astronify.series,	import	Sona	series.	"WxPython	is	not	found	for	the	current	Python
version.	Pyo	will	use	a	minimal	GUI	toolkit	written	with	Teak."	All	right,	I'm	not	going	to
play	that	the	whole	way	through.	I	think	basically	everyone	I've	spoken	to	has	gotten	this
sort	of	warning.	I	wanted	to	play	a	little	bit	of	it	again,	just	so	you	know	not	to	worry.

(42:40	-	42:58)

I	think	there's	this	like	audio	Python	package	called	Pyo	that	Astronify	is	built	on	that	is
going	through	some	changes.	Oh	no,	don't	be	back.	Oh	my	gosh,	we	had	all	this	time	of
silence	and	then	I	get	that	speaker	alert	again.

(42:58	-	43:12)

...	All	right,	we're	gonna	hope	that	that	doesn't	come	back	for	good.	 I	enjoyed	that	not
happening	like	it	did	last	week	so	everyone	please	cross	your	fingers	for	me.

(43:13	-	43:23)

Um,	okie	dokie.	Okay,	 so	don't	worry	about	 that.	 I	will	 say	also	 from,	you	know,	some
testing	I've	done	from	preparing	for	this	tutorial.

(43:24	-	43:34)

I	don't	necessarily	know	whether	it's	Astronify	or	Pyo,	which	Astronify	is	built	on.	It	has
some	technical	difficulties.	So	you	might	encounter	those	now.

(43:34	-	43:53)

So	one	of	 the	most	common	problems	 I've	noticed	 is	a	persistent	clicking	noise	during
the	sonifications	when	you	play	them	from	the	terminal.	I	have	saved	the	audio	as	a	file
which	is	how	I'll	play	it	for	you	because	it's	from	the	terminal	doesn't	seem	to	play	very
nicely	over	Zoom.	That	does	not	have	that	persistent	clicking	noise.

(43:54	-	44:06)

I	 don't	 know	why	 it's	 in	 the	 terminal.	 I	 assume	 it's	 some	 sort	 of	 bug.	 I'll	 also	 say	 that
sometimes	 there	will	 be	a	persistent	 clicking	noise	 for	 a	 couple	of	 seconds	before	 the
sonification	actually	begins.

(44:06	-	44:25)

Don't	 panic.	 And	 then	 occasionally,	 especially	 if	 you	 didn't	 have	 headphones	 plugged
into	your	computer	when	you	started	the	terminal	session	and	then	you	go	and	plug	the
headphones	in.	When	you	try	to	actually	play	a	sonification,	it'll	throw	a	little	bit	of	a	fit
because	it	can't	find	the	right	audio	output	anymore.

(44:26	-	44:39)



None	of	these	are	insurmountable	issues.	Sometimes	the	worst	case	scenario	for	any	of
these	bugs	is	clicking	noise,	which	is	a	little	bit	of	a	nuisance.	Or	hopefully	none	of	you
have	to	do	this	because	this	would	make	it	very	difficult.

(44:39	-	44:50)

You'd	lose	your	place.	But	restarting	the	terminal	session.	I	don't	want	you	to	have	to	do
that	right	now,	but	if	you	encounter	these	bugs	in	your	own	time,	don't	panic.

(44:50	-	44:59)

It's	not	an	insurmountable	problem.	It's	just	a	little	bit	of	bugginess	just	because	this	is	a
little	bit	of	a	smaller	package.	So	just	want	to	give	you	a	heads	up.

(45:00	-	45:10)

Hopefully	the	helpers	can	help	you	 in	the	chat.	 If	any	of	 these	problems	come	up,	you
might	see	them	crop	up	in	my	own	terminal.	But	as	I	said,	we	have	the	sonifications	all
already	saved.

(45:10	-	45:20)

So	one	way	or	another,	you	will	hear	them.	On	that	note,	let's	get	sonifying.	So	I'm	going
to	make	an	instance	of	the	sauna	series	class.

(45:20	-	45:43)

That's	 going	 to	 be	 our	 sonification	 object.	 And	 because	 I	 am	 sonifying	 Philadelphia
temperatures,	 I'm	 going	 to	 call	 this	 SONI	 underscore	 Philadelphia.	 "S-O-N-I	 line."
Philadelphia.	"P-H-I-L-A-D-E-L-P-H-I-A."	SONI	underscore	Philadelphia	equals.

(45:43	-	45:53)

"Space	equals."	And	then	I'm	going	to	do	SONI	series.	Again,	remembering	that	the	S's	in
SONI	and	series	are	capitalized.

(45:53	-	46:05)

"S-O-N-I-S-E-R-I-E-S."	 So	 that's	 SONI	 series,	 capital	 S-O-N-I,	 capital	 S-E-R-I-E-S.	 Open
parenthesis.

(46:06	-	46:26)

T-B-L.	So	make	a	SONI	series	object	from	the	data	in	our	table,	T-B-L,	comma.	Remember
again	 that	we	need	 to	 tell	 the	SONI	series	class	what	our	 time	and	value	columns	are
called.



(46:26	-	46:38)

In	our	case,	we've	just	made	the	time	column.	That's	going	to	be	our	time	step	column.
And	 then	our	 value	 column,	 the	 thing	 that's	going	 to	 change	over	 time	 is	going	 to	be
Philadelphia	temp.

(46:38	-	46:55)

So	let's	tell	SONI	series	that	now.	So	we're	going	to	do	time	underscore	C-O-L.	"T-I-M-E,
line	C-O-L."	T-I-M-E	underscore	C-O-L,	time	call	equals.	"Equals."	Open	quotation	mark.

(46:55	-	47:06)

"Tick."	Time	step,	all	one	word,	because	that's	what	we	called	that	column.	"T-I-M-E-S-T-
E-P."	Close	quotation	marks.	Then	add	a	comma.	Comma.

(47:07	-	47:10)

Space.	"Space."	Val	underscore	call,	V-A-L.

(47:10	-	47:17)

"V-A-L,	line	C-O-L."	That's	for	value	column.	Space	equals.

(47:17	-	47:22)

"Equals."	Or	I	guess	not	space.	We	can	do	space	here.

(47:22	-	47:29)

"Space	equals	space."	That's	probably	the	proper	 form.	And	then	that	column	 is	called
Philadelphia.

(47:29	-	47:31)

Don't	forget	your	quotation	marks.	"Tick."	Philadelphia.

(47:31	-	47:44)

"P-H-I-L-A-D-E-L-P-H-I-A."	Underscore	 temp.	 "Line	T-E-M-P."	 For	 temperature,	 close	your
quotation	marks.	"Tick."	Close	your	parenthesis.

(47:44	-	48:09)

Right	paren.	And	hit	enter.	My	goodness,	I'm	getting	a	Zoom	audio	alert	now?	"Settings
window.	Security.	Close	closes	 the	window.	Desktop	windows."	Can	you	hear	me?	Yes,
we	can.	Indeed.	Oh,	my	goodness.



(48:10	-	48:13)

Wow.	We	really	can't	win	with	the	audio	issues	here.	All	right.

(48:13	-	48:21)

We	will	plow	forward.	 I	got	an	audio	alert	saying	that	my	audio	device	wasn't	detected
anymore.	I	didn't	even	try	to	play	anything	yet.

(48:21	-	48:26)

All	right.	This	is	a	rather	long	line	of	code.	So	maybe	if	one	of	the	helpers	wants	to	paste
that	into	the	chat.

(48:26	-	48:37)

This	is	a	good	line	of	code	to	become	familiar	with,	though,	because	we're	going	to	use	it
over	and	over.	Basically	 just	changing	the	name	of	the	sonification.	So	we	won't	sonify
Philadelphia	all	the	time.

(48:38	-	48:48)

And	then	also	changing	the	name	of	the	value	column	from	Philadelphia	temp	to	some
other	column	that	we	might	be	interested	in.	All	right.	Next	I'm	going	to	sonify	this	thing.

(48:48	-	49:05)

S-O-N-I	line	P-H-I-L-A-D-E-L-P-H-I-A.	So	what	I've	done	here	is	I've	typed	soni	underscore
Philadelphia	again.	That's	S-O-N-I	underscore	Philadelphia	to	call	that	object	again.

(49:05	-	49:11)

Then	I'm	going	to	hit	dot.	It	wants	to	do	something	else.	I	don't	want	it	to	do	that.

(49:11	-	49:22)

And	I'm	going	to	do	dot	sonify.	That's	S-O-N-I-F-Y.	I'm	going	to	do	open	parenthesis,	close
parenthesis.

(49:23	-	49:29)

And	 then	 that's	 it.	 I'm	 going	 to	 hit	 enter.	 So	 it's	 S-O-N-I	 underscore	 Philadelphia	 dot
sonify.

(49:29	-	49:42)

So	make	the	sonification	out	of	the	SONI	Philadelphia	SONI	series	instance.	So	make	the
sonification.	This	isn't	going	to	play	the	sound	quite	yet.



(49:43	-	49:48)

So	just	hit	enter.	It's	now	sort	of	done	all	of	its	pitch	mapping.	It's	ready	to	go.

(49:48	-	49:58)

It's	found	how	it's	going	to	represent	the	sounds.	The	last	step	is	to	play	the	thing.	I	am
not	even	going	to,	well,	I'll	try	once	to	play	it	from	terminal.

(49:59	-	50:17)

I	don't	have	the	highest	hopes,	but	we'll	cross	our	fingers.	We	have	the	audio	file	ready.
And	I	want	you	to	keep	in	mind	from	last	week	that,	remember,	Astronify	maps	pitch	to
the	value	such	that,	by	default,	higher	values	are	mapped	to	higher	pitches.

(50:18	-	50:33)

So	what	you	should	hear	here	is	higher	temperatures	represented	as	higher	pitches	and
lower	 temperatures	 represented	as	 lower	pitches.	 I	 think	 the	sonification	 is	pretty	 fun.
My	office	mates	tell	me	that	they	think	it	sounds	like	wind,	which	is	not	a	bad	thing.

(50:34	-	50:42)

And	 the	way	we	are	going	 to	play	 the	sonification,	you	might	 recall	 from	 last	week,	 is
SONI,	S-O-N-I.	S-O-N-I.	Underscore	Philadelphia.

(50:43	-	50:54)

"Line	P-H-I-L-A-D-E-L-P-H-I-A."	Dot	play.	Open	parenthesis,	close	parenthesis.

(50:56	-	51:05)

SONI	underscore	Philadelphia	dot	play.	If	anyone	wants	to	take	bets	over	whether	this	is
going	to	actually	work	on	Zoom,	please	feel	free.	Now	is	your	chance.

(51:05	-	51:18)

Hopefully	it	will	work	on	your	computer.	It	works	on	my	computer	when	I'm	not	on	Zoom.
There	 just	 seems	 to	 be	 an	 ongoing	 disagreement	 going	 between	 Zoom	 and	whatever
terminal	audio	situation	is	going	here.

(51:18	-	51:41)

So	I	don't	have	the	highest	hopes.	Desktop.	...	"in	21."	All	right.	I	don't	believe	that	that
worked.

(51:41	-	51:45)



Hopefully	you	can	hear	me	again.	It	did.	Oh,	it	did?	It	worked.

(51:45	-	51:52)

It	worked.	Can	you	redo	it	without	your	screen	reader	on?	Yeah.	Oh,	my	goodness.

(51:52	-	51:56)

I	am	absolutely	astonished.	All	right.	I'm	going	to	turn	off	NVDA.

(51:56	-	52:03)

I'm	going	to	type	that	SONI	Philadelphia	again,	dot	play	again.	I	stopped	it	early.	So	we
didn't	hear	the	whole	thing.

(52:04	-	52:08)

And	we'll	cross	our	fingers	that	it	works	a	second	time.	Wow.	I	would	have	just	lost	that
bet.

(52:08	-	52:24)

"Speech	mode	off."	Do	you	know	about	the	up	button?	You	mean	to	the	up	button?	Yeah.
You	 don't	 have	 to	 retype	 this	 stuff	 if	 you've	 already	 retyped,	 if	 you've	 already	 typed
something.

(52:24	-	52:27)

Yeah.	Yeah.	I	could,	but	I	want	to,	you	know,	I	don't	want	to.

(52:28	-	52:30)

Sorry.	Sorry	to	interrupt	you.	Gotcha.

(52:30	-	52:33)

Gotcha.	But,	yeah.	Yeah.

(52:33	-	52:36)

Okay.	Here	we	go.	Let's	cross	our	fingers	again.

(54:16	-	54:22)

Okie	 dokie.	 I'm	 hoping	 that	 went	 through.	 And	 you	 might	 notice	 that's	 a	 rather	 long
sonification.

(54:22	-	54:33)



That's	because	we	have	a	 lot	of	data	points	 there.	So	 it	 takes	a	 long	 time.	Last	week,
actually,	you	might	remember	me	changing	the	note	spacing	by	doing,	like,	the	dot	note
spacing.

(54:33	-	54:40)

There	 I	was	slowing	 it	down	because	we	had	relatively	 few	data	points.	There	we	had,
like,	100.	Here	we	have	over	9,000,	I	believe.

(54:40	-	54:48)

We	 don't	 want	 to	 slow	 this	 down	 anymore.	 This	 is	 already,	 I	 think,	 over	 a	 minute	 of
sonified	data.	So	we	definitely	don't	want	to	slow	it	down.

(54:48	-	54:55)

You	can	play	around	with	the	note	spacing	and	speed	it	up	if	you	want.	I	didn't	think	it
worked	very	well	sped	up.	I	think	it	was	a	little	hard	to	interpret.

(54:55	-	55:10)

But,	you	know,	 feel	 free	 to	putter	around	with	 that	 if	 you	would	 like.	The	default	note
spacing	 is,	 I	 think,	 .01	seconds	between	each	note.	So	feel	 free	to	go	wild	and	change
that,	just	like	we	did	last	week,	if	you	want	to.

(55:10	-	55:27)

There	are	a	couple	of	things	I	want	you	to	think	about.	First,	notice	how	you	could	hear
those	up	and	down	cycles	of	 the	temperature	going	up	and	down	and	up	and	down	at
sort	of	regular	intervals.	You	are	literally	hearing	the	turn	of	the	seasons.

(55:27	-	55:43)

You're	 hearing	 years	 go	 by	 in	 the	 data	 as	 those	 moments	 of	 higher	 pitches	 are	 the
miserably	 swampy	 Philadelphia	 summers,	 and	 the	 moments	 of	 lower	 pitches	 are	 the
miserably	cold	Philadelphia	winters.	 I	do	actually	really	 love	Philadelphia.	Don't	get	me
wrong.

(55:44	-	55:59)

But	 so	 you're	 hearing	 the	 cycle	 of	 the	 seasons	 in	 the	 sonification.	 That	 is	 one	 of	 the
fastest	non-visual	overviews	of	the	data	to	get	that	sort	of	sense	of	the	shape	that	we
can	do.	Just	think	about	it.

(55:59	-	56:35)

If	 you	 didn't	 know	 Philadelphia	was	 sort	 of	 a	 temperate	 place,	 saying	 you	 don't	 know



whether	 it's	the	desert	or	Antarctica,	where	there's	maybe	not	as	much	of	a	cycle	of	a
season,	all	you	have	to	do	is	play	that,	and	you	know	immediately,	ah,	Philadelphia	has
seasons.	 Another	 thing	 that	 you	might	 want	 to	 notice	 from	 the	 data,	 something	 that
might	be	adding	to	sort	of	that	wind-like	effect	that	we	have	going	there,	it's	a	little	what
I'm	going	to	call	wobbly.	 It	 is	not	 like	a	perfect	wave-like	pattern	where	it	goes	up	and
down	and	up	and	down	perfectly	like	that	sine	wave	that	we	made	last	tutorial.

(56:35	-	56:53)

That's	 because	 this	 is	 real	 data,	 so	 you	 could	 get	 like	 an	 anomalously	 hot	 day	 in	 the
winter	and	a	nice	cool	day	in	the	summer.	At	least	you	could	dream	of	a	nice	cool	day	in
the	Philadelphia	summer.	So	 the	data	 is	not	 following	a	perfect	 trend,	and	 I	 think	 that
sort	of	contributes	to,	yeah,	that	spooky	wind	vibe.

(56:54	-	57:22)

All	 right,	 so	 that's	 our	 first	 sonification	 of	 the	 day	 and	 your	 first	 sonification	with	 real
data.	And	also,	 I'm	not	going	to	play	it	again	now	because	it's	rather	 long,	but	 I	totally
encourage	you	 if	you	want	 to	play	 it	again	 later,	you	can	 listen,	maybe	see	 if	you	can
count	all	15	years	of	our	data	in	there,	things	like	that.	But	I	think	one	of	the	best	ways
to	learn	more	about	this	sonification	is	going	to	be	to	sonify	something	else	and	compare
it.

(57:22	-	58:16)

So	let's	dive	right	into	our	next	sonification.	We	are	going	to	sonify	the	daily	temperature
in	Delhi,	 India.	So	 let's	make	a	new	instance	of	the	Soni	Series	class.	Actually,	before	 I
break	 into	 that,	 I	 just	want	 to	see	do	 I	have	any	questions	because	we've	 finally	burst
into	the	sonification	scene.	So	 if	 there	are	questions,	 I'll	address	those	now.	When	you
just	played	that	sound	and	it	repeated,	does	it	repeat	indefinitely	or	do	you	have	control
over	that?	Yeah,	that's	an	excellent	question.

(58:16	-	58:26)

So	it	sounded	like	it	was	repeating,	but	actually	those	were	just	multiple	years	of	data	we
have.	So	it	won't	repeat	indefinitely.	It	will	repeat	for	those	15	years	of	data	we	have.

(58:26	-	58:37)

So	there	were	15	cycles	there.	Now,	I	know	this	is	rather	a	long	sonification.	So	if	I	didn't
want	to	listen	to	it	until	the	end,	which	we	did	this	time,	we	listened	to	it	until	it	stopped.

(58:37	-	58:51)

So	that	stopped	on	its	own.	That	wasn't	going	to	go	on	forever.	If	I	want	to	stop	it	early,	I
can	type	soni	underscore	Philadelphia	dot	stop,	open	parenthesis,	close	parenthesis,	and



the	same	way	we	did	dot	play.

(58:51	-	58:59)

So	stop	and	play	are	sort	of	parallel	to	each	other.	I	might	do	that	later.	I	should	probably
even	add	that	to	the	curriculum	because	I	don't	think	I	wrote	it	down	there.

(58:59	-	59:14)

But	yes,	 it	 is	not	 indefinite.	 It	goes	basically	the	time	is	determined	by	how	many	data
points	you	have	and	then	the	duration	of	each	note	and	then	the	spacing	between	each
note.	We're	using	the	default	duration	and	spacing.

(59:14	-	59:22)

So	of	the	notes	that	Astronify	gives	us.	But	again,	you	can	play	around	with	those.	Those
will	affect	how	long	the	sonification	is.

(59:24	-	59:45)

So	yes,	this	is	a	rather	long	one,	but	it's	not	indefinite.	All	right.	I	hear	some	silence.

(59:45	-	59:56)

So	I'm	going	to	turn	NVDA's	speech	back	on.	"Speech	mode	beeps.	Speech	mode	talk."
Excellent.	We	are	back	in	business.	And	I'm	going	to	make	that	sonification	of	the	Delhi,
India	temperature.

(59:57	-	1:00:13)

So	 I'm	 going	 to	 do	 Soni	 underscore	 Delhi.	 "S.	 S-O-N-I."	 And	 Delhi	 has,	 I	 guess	 I'm
probably	butchering	the	pronunciation,	but	it's	like	Delhi,	so	an	H	after	the	L.	So	Soni,	S-
O-N-I	underscore.

(1:00:13	-	1:00:26)

"Line	D-E-L-H-O	dot	play."	That	O	was	a	typo.	So	that's	S-O-N-I	underscore	D-E-L-H-I.

(1:00:26	-	1:00:52)

Space	equals.	"Space	equals.	Space."	And	we're	going	to	make	this,	again,	an	instance
of	our	Soni	series	class.	So	that's	capital	S-O-N-I.	"O-N-I."	Series.	Capital	S	again.	"S-E-R-I-
E-S."	So	Soni	underscore	Delhi	equals	Soni	series	with	capital	S's.	Open	parenthesis.	T-B-
L.

(1:00:53	-	1:01:19)

"T-B-L."	Comma.	 "Comma."	 So	again,	make	a	Sona	 series	 object	 from	 the	 table	 T-B-L.



Space.	 "Space."	 Time	underscore	 call.	 So	 call	 C-O-L	 like	 column.	 "T-I-M-E."	Underscore
call	 like	 column.	 "Line	 C-O-L."	 So	 time	 underscore	 call	 equals	 time	 step	 in	 quotation
marks	just	like	last	time.

(1:01:19	-	1:01:30)

So	our	time	column	is	again	that	column	that	we	made	that	we	called	time	step.	"Equals
T-I-M-E-S-T-E-P."	Quotation	mark.

(1:01:30	-	1:01:33)

Tick.	Or	tick.	Comma.

(1:01:33	-	1:01:44)

"Comma."	Space.	"Space."	Val	call	for	the	value	column.	V-A-L.	"V-A-L."	Underscore	call
C-O-L.	"Line	C-O-L."	Equals.

(1:01:44	-	1:01:55)

"Equals."	Open	quotation.	"Tick."	And	then	the	Delhi	temperature	column	is	called	Delhi
underscore	temp.	"D-E-L-H-I."	Underscore	temp.

(1:01:55	-	1:02:02)

"Line	T-E-M-P."	And	then	close	your	quotation	marks.	Close	your	parenthesis.

(1:02:02	-	1:02:07)

"Right	paren."	So	to	summarize,	that	is	SONI	with	an	I.	S-O-N-I.	Underscore	Delhi.

(1:02:08	-	1:02:12)

Equals.	SONI	series	with	those	capital	S's.	Open	parenthesis.

(1:02:12	-	1:02:18)

T-B-L.	Comma.	Time	underscore	C-O-L	equals	quotation	marks	time	step.

(1:02:19	-	1:02:26)

Close	quotation	marks.	Comma.	Val	underscore	call	equals	open	quotation	marks	Delhi
underscore	temp.

(1:02:26	-	1:02:31)

Close	quotation	marks.	Close	parenthesis.	So	make	a	SONI	series	a	SONIFICATION	object.

(1:02:31	-	1:02:42)



Call	 it	SONI	Delhi.	From	the	table	T-B-L,	call	 the	time	column	time	step.	And	the	value
column	is	the	daily	temperature	in	Delhi,	India.

(1:02:42	-	1:02:45)

Hit	enter.	"In	23."	Good	to	go.

(1:02:45	-	1:02:56)

And	 then	 these	 next	 two	 lines	 should	 hopefully	 be	 familiar.	 It's	 going	 to	 be	 SONI
underscore	Delhi.	"S-O-N-I."	Underscore	Delhi.	"Line	D-E-L-H-I."	Dot	SONIFY.

(1:02:57	-	1:03:06)

"Dot	S-O-N-I-G-Y."	Ooh,	not	G.	Y-G-F-Y.	SONIFY,	not	SONIGUY.

(1:03:08	-	1:03:12)

That's	not	it.	"Left	right	paren."	And	don't	forget	those	parenthesis	at	the	end.

(1:03:12	-	1:03:29)

So	 again,	 this	 is	 just	 going	 to	 actually	 SONIFY	 our	 data.	 So	map	 things	 to	 pitch,	 you
know,	 map	 the	 values	 to	 the	 pitches	 the	 way	 we	 want.	 "In	 24."	 And	 then	 SONI
underscore	Delhi	dot	play.	"S-O-N-I.	Line	D-E-L-H-I.

(1:03:30	-	1:03:46)

Dot	 P-L-A-Y."	 And	 again,	 don't	 forget	 those	 parenthesis,	 open	 and	 close.	 "Left	 right
paren"	Because	 this	 is,	 you	know,	a	 function	we're	 calling,	but	we're	not	entering	any
parameters.	So	we	just	leave	some	empty	parenthesis	there.	And	we	will	again	cross	our
fingers	that	this	works.

(1:03:47	-	1:03:51)

And	we'll	hit	go.	And	again,	this	is	going	to	be	a	rather	long	one.	Pile	warning.

(1:03:52	-	1:05:33)

Speech	mode	off.	All	righty.	Pretty	cool,	huh?	So	I	noticed	a	couple	of	things	about	that
Delhi	temperature	sonification.

(1:05:33	-	1:05:42)

First,	 I	noticed	that	there	was,	 like,	 less	noisiness.	It	seemed,	what	I	mean	by	that,	 like
there	was	less	wavering.	So	it	seemed	more	of	a	smooth	trend.

(1:05:42	-	1:06:05)



So	maybe	Delhi	is	less	likely	to	have	that	random,	like,	hot	winter	day	that	Philadelphia
could	have.	 It	also	sounded	to	me	 like	there	 is	more	variation	between,	you	know,	the
hottest	and	coldest	days.	But	one	of	 the	 things	 I	 noticed	 is	 that,	 like,	 on	average,	 the
pitch,	like	the	average	pitch	of	that	sonification	was	pretty	similar	to	the	average	pitch	of
the	Philadelphia	sonification.

(1:06:06	-	1:06:36)

And	I	don't,	I've	never	been	to	India,	but	I	kind	of	expected	Delhi,	India	to	be	a	lot	hotter
on	average	than	Philadelphia.	And	thus	I	would	expect,	naively,	the	average	pitch	of	our
sonification,	 knowing	 that	 higher	 temperatures	 are	 represented	 by	 higher	 pitches,	 I
would	expect	 the	pitch	of	our	sonification	 to	be	higher	on	average.	 I'm	going	 to	check
that	because,	you	know,	I	don't	know	for	certain	whether	maybe	Delhi	is	actually	really
cold.

(1:06:36	-	1:06:47)

So	 we've	 already	 done	 this	 for	 Philadelphia.	 And	 this	 is	 one	 of	 the	 reasons	 why	 I
recommended	 you	 do	 this	 before	 you	 sonify	 something.	 Now	 I	 have	 to	 go	 back	 and
check	the	average	temperature	in	Delhi,	India.

(1:06:49	-	1:07:06)

And	I'm	going	to	check	this	using	the	data	frame.	So	our	data	frame	DF	still	exists	in	this
IPython	session,	even	 though	we've	been	using	TBL,	or	 tables,	since.	That	 fromPandas
function,	not	going	to	destroy	our	nice	data	frame,	fortunately.

(1:07:06	-	1:07:28)

And	as	I	mentioned	before,	the	syntax,	like	the	way	we	access	AstroPy	tables	is	like	just
different	enough	 from	Pandas	data	 frames	 to	be	 inconvenient.	And	 frankly,	unless	you
intend	to	be	an	astronomer,	you	don't	need	to	 learn	how	to	deal	with	AstroPy	tables.	 I
think	sometimes	even	astronomers	don't	know	how	to	deal	with	AstroPy	tables.

(1:07:28	-	1:07:36)

So	let's	work.	And	the	data	in	our	data	frame	is	the	same	as	the	one	in	our	AstroPy	table.
So	let's	work	with	the	data	frame.

(1:07:37	-	1:07:47)

So	I	want	to	test	the	average	temperature	in	Delhi,	India.	So	that's	going	to	be	DF.	Oh,	I
got	to	turn	my	speech	back	on.

(1:07:47	-	1:07:50)



"Speech	mode	beep.	Speech	mode	talk."	Got	to	remember	to	do	that.

(1:07:50	-	1:08:03)

Okay,	so	that's	DF.	Dot	Delhi	underscore	temp.	"Dot	D-E-L-H-I	 line	T-E-M-P."	Dot.	"Dot."
Mean	for	average.

(1:08:03	-	1:10:40)

"M-E-A-N	left	paren,	right	paren."	That's	DF	dot	Delhi	underscore	temp	dot	mean,	open
and	close	parenthesis.	"Out	25,	76.96521316783594	in	26."	All	right,	so	that's	like	what
almost	77	degrees	Fahrenheit	on	average	and	 I	 recall	 that	the	average	temperature	 in
Philadelphia	 was	 like	 56	 degrees	 Fahrenheit	 so	 this	 is	 about	 20	 degrees	 hotter	 on
average	 in	Philadelphia	 so	 it's	 sure	 like	on	average	a	 lot	hotter.	 Let's	hear	maybe	 like
what	 the	minimum	 temperature	 in	 that	 Delhi,	 India	 column	 temperature	 column	 is	 so
that's	going	to	be	DF	dot	Delhi	underscore	temp	dot	mean,	open	and	close	parenthesis.
"F-G."

Whoops,	that's	not	correct.	"G-F-D-F"	Dot	Delhi	underscore	temp.

"Dot	 D-E-L-H-I	 line."	 Okay,	 sorry,	 checking	 on	 the	 guide	 dog	 heard	 a	 suspicious	 noise
didn't	like	it.	"T-E-M-P."	DF	dot	Delhi	underscore	temp	dot	min.	Dot	M-I-N.	Open	and	close
parenthesis.	 "Left	 parent	 right	 paren	 out	 26	 43.9	 in	 27.	 "All	 right,	 so	 the	 coldest
temperature	we	have	recorded	 for	Delhi	 is	43.9	degrees	Fahrenheit.	And	 I	 think	 it	was
what	like	12	ish	for	Philadelphia	so	it	is	never	getting	as	cold	in	Delhi	as	it	gets	in.

Well,	I	mean,	some	days	it'll,	but	like	it	never	gets	as	cold	as	the	coldest	temperature	in
Philadelphia,	 and	 that	 is	 not	 immediately	 obvious	 from	 the	 sonification.	 What	 gives?
Well,	what	is	happening	is	we	are	creating	individual	soni	series	objects	for	each	of	our
sonifications.	And	in	order	to	make	a	sonification	that	sounds	nice,	Astronafy	maps	and
scales.

Each	 of	 these	 sonifications	 individually.	 What	 do	 I	 mean	 by	 this?	Well,	 they	map	 the
values	of	our	 temperatures	 to	pitches	 independently	of	each	other.	So	a	note	 that	we
hear	in	the	Delhi	sonification	is	not	even	if	it's	the	same	like	pitch,	it's	not	representing
the	same	 temperature	 that	we	hear	 in	 the	Philadelphia	 sonification,	because	 the	pitch
mapping	is	different,	because	the	scaling	is	different	by	default.

(1:10:40	-	1:11:11)

So	again,	these	are	the	default	settings	and	they	do	this	to	make	it	sound	nice.	And	in
fact	 this	 is	 not	 a	unique	 thing	 to	Astronafy	or	 sonifications.	 The	most	 common	Python
visualization	 package	matplotlib	 is	 going	 to	 automatically	 scale	 our	 visualization	 axes
based	on	the	data	points	you	give	it	as	well.



So	this	is	not	a	sonification	unique	thing.	But,	because	these	are	the	default	settings	we
do.	Sorry,	guide	dog.

(1:11:12	-	1:11:56)

Having	a	moment.	Okay,	because	 these	are	 the	default	settings,	we	can	 fiddle	around
with	 them.	 And	 the	 one	 setting	 we're	 going	 to	 want	 to	 change	 the	 pitch	 mapping
parameter	will	want	to	change	 in	particular	 in	Astronify	 is	something	that	they	call	 the
zero	point.	Basically,	they	pick	some	central	pitch	of	the	data.	By	default,	they	will	pick
the	median	value	of	our	data	and	map	that	 to	a	central	pitch	of	440	hertz.	 I	can't	 like
conceptualize	in	my	mind	exactly	what	440	hertz	sounds	like,	but	that's	like	sort	of	I	take
it	the	center	of	the	pitch	range	of	the	sonification.

(1:11:57	-	1:13:33)

And	so	every	time	what	Astronafy	does	is	it	calculates	the	median	of	the	data	and	says,
all	 right,	we're	going	 to	 represent	 anything	 like	 this	median	value	as	440	hertz	 in	 the
sonification.	 But	 because	Delhi	 and	 Philadelphia	 are	 such	 different	 temperatures,	 they
have	very	different	median	temperatures	that	are	being	represented	by	that	same	pitch.
Fortunately,	we	can	change	again	what	Astronify	calls	the	zero	point	so	we	can	change
the	value	that	it's	mapping	to	that	central	pitch.	So	what	I'm	going	to	do	is	I'm	going	to
change	 the,	 I'm	 going	 to	 change	 the	 central	 or	 not	 the	 central	 pitch,	 the	 zero	 point.
Sorry,	 I'm	 going	 to	 change	 the	 zero	 point	 of	 the	 Delhi	 sonification	 to	 be	 equal	 to	 the
median	value	of	 the	Philadelphia	 temperatures	because	we	know	that	 the	Philadelphia
sonification	 is	 going	 to	 be	 scaled	 to	 its	 median	 by	 default.	 So	 I'll	 just	 set	 the	 Delhi
sonification	to	be	scaled	to	that	number	two.

I	could	scale	them	both	to	some	arbitrary	number	I	could	set	their	zero	point	for	both	of
them	to	be	like	I	don't	know	70	degrees.	But	at	this	point,	you	know,	this	way	we	only
have	to	change	one	of	 the	sonifications,	we	can	 just	muddle	around	with	one	of	 them.
So,	 the	 first	 thing	 I	 need	 to	 know	 is	 hey,	what's	 the	median	 value	 of	 the	 Philadelphia
daily	 temperature,	 we've	 printed	 out	 the	 mean	 the	 average	 but	 I	 want	 to	 know	 the
median	because	that's	what	Astronafy	by	default	is	using.

(1:13:34	-	1:15:02)

So	 to	 do	 that,	 I'm	 going	 to	 do,	 df,	 no,	 sorry	 lots	 of	 typos	 today,	 df.philadelphia
underscore	 temp	 dot	 median,	 m-e-d-i-a-n	 "dot	 m-e-d-i-a-n,"	 and	 don't	 forget	 those
parentheses,	 "left	 paren,	 right	 paren,	 out	 27,	 57.0,	 in	 28."	 Alright,	 so	 the	 median
temperature	 in	 that	 Philadelphia	 temperature	 column	 is	 57	 degrees.	 Now,	 this	 line	 of
code	 that	 I'm	going	 to	use	 is	basically	 letting	me	go	 into	 the	what	Astronafy	 calls	 the
pitch	map	arguments.

So	 the	 sort	 of	 parameters	 it	 uses	 to	 map	 the	 values	 of	 our	 data	 to	 pitches	 and	 the



sonification.	 I'm	going	 to	 dig	 into	 those,	 and	 I'm	going	 to	 change	 the	 zero	 point	 pitch
map	argument	to	be	57	of	the	Delhi	sonification,	because	that'll	make	it	the	same	as	the
Philadelphia	zero	point	because	by	default,	again,	the	Philadelphia	zero	point	will	be	57.
It's	median	value.

This	 is	a	rather	 long	 line	of	code.	 I'll	go	through	 it	here.	Maybe	one	of	 the	helpers	can
sort	of	fling	it	into	the	chat	as	well	just	because	it's	kind	of	got	like	a	lot	of	dots	and	so	on
and	so	forth.

(1:15:02	-	1:15:19)

Alright,	 let's	 do	 SONI	 underscore	 Delhi.	 So	 I'm	 calling	 that	 object	 again,	 that's	 SONI
underscore	Delhi	object.	And	then	I	want	to	go	pitch	underscore	mapper.

(1:15:19	-	1:15:43)

"P-I-T-C-H	 line	 M-A-P-P-E-R."	 So	 SONI	 underscore	 Delhi	 dot	 pitch	 P-I-T-C-H	 underscore
mapper	M-A-P-P-E-R.	So	call	 the	pitch	mapper,	call	 the	way	that	the	Delhi	 temperature
data	is	being	mapped	to	pitches.

(1:15:43	-	1:18:41)

And	 then	we	want	 to	 call	 the	pitch	map	args,	 the	pitch	map	argument.	So	 sort	of	 the
parameters	 of	 the	 way	 these	 pitches	 are	 being	 mapped.	 So	 dot	 pitch	 "P-I-T-C-H"
underscore	 map	 "line	 M-A-P"underscore	 args	 A-R-G-S	 line	 "A-R-G-S."	 So	 just	 to
summarize	so	 far,	 that's	SONI	underscore	Delhi	dot	pitch	underscore	mapper	dot	pitch
underscore	map	underscore	args	A-R-G-S.	Open	square	bracket,	open	quotation	marks,
then	zero	underscore	point,	underscore	point,	close	quotation	marks,	close	brackets.	So
basically	what	have	I	done	here?	I've	called	the	pitch	map	argument	zero	point.

So	that	thing	we've	been	discussing,	that	point	in	the	data	that	will	be	represented	every
time	 is	 440	 hertz.	 I'm	 calling	 that	 from	 this	 Delhi	 sonification.	 And	 I'm	 going	 to	 set	 it
equal	to	57	because	that	is	the	median	value	of	our	Philadelphia	temperatures.

I'm	just	going	to	hit	enter.	All	right.	That	bit	is	done.

The	only	two	things	we	have	left	to	do,	we	have	to,	 in	order	for	 it	to	play	properly,	we
have	to	re-sonify	the	data.	So	basically	we	have	to	remap	the	pitches,	the	values	of	our
data	to	the	pitches.	"S-O-N-I	line."

So	that's	SONI	underscore	Delhi	D-E-L-A-I	dot	sonify,	as	we're	familiar	with,	dot	S-O-N-I
"left	 right	paren	 in	30."	And	before	 I	play	 this	new	Delhi	 sonification,	 I'm	going	 to	 first
replay	some	of	the	Philadelphia	sonification	just	so	we	have	that	basis	of	comparison.	I
probably	won't	let	it	play	through	the	end.

I'll	play	it	for	a	little	bit.	So	at	some	point	I'll	call	that	like	dot	stop	function,	but	I'm	going



to	 turn	 off	my,	 I'll	 type	 out	 that	 SONI	 Philadelphia	 dot	 play	with	NVDA	 speech	on	 and
then	 I'll	 turn	 it	off	 so	we	can	 listen.	 "S-O-N-I	 line	P-H-I-L-A-D-E-L-P-H-I-A	dot	P-L-A-Y	 left
right	paren."	So	that's	SONI	underscore,	oh	my	goodness,	Alana,	you	are	going	to	knock
my	chair	over.	I'm	so	sorry.	Okay,	SONI	underscore	Philadelphia	dot	play	open	and	close
parentheses.

I'm	going	to	turn	off	NVDA	speech.	And	hit	play,	or	hit	enter	I	suppose.	That	audio	sounds
rather	weak.

(1:19:03	-	1:19:14)

Give	me	give	me	a	verdict	in	the	room,	folks.	Can	we	hear	that	well	enough	or	should	I
play	it	from	the	recording?	It	sounded	a	little	weak	on	my	end.	It	sounded	pretty	okay.

(1:19:16	-	1:19:29)

Maybe	 it's	 that.	 All	 righty	 then.	 All	 right,	 so	 just,	 I	 didn't	 let	 that	 play	 the	 whole	 way
through	 because	 it's	 pretty	 long,	 but	 just	 as	 our	 basis	 of	 comparison	 for	 the	 Delhi
sonification,	which	will	now	play	I'm	going	to	turn	NVDA	back	on.

(1:19:29	-	1:21:25)

"Speech	mode	beeps,	speech	mode	talk."	All	righty,	and	then	I'm	just	going	to	do	SONI
underscore	Delhi	dot	play	"S-O-N-I	 line	D-E-L-H-I	dot	P-L-A-Y	left	paren	right	paren"	and
we'll	do	the	play	"speech	mode	off."	All	righty.

(1:21:25	-	1:22:01)

So	hopefully	you	could	tell	that	the	pitch	in	general	was	way	higher	with	that	new	Delhi
sonification	 than	 with	 the	 original	 and	 then	 with	 the	 Philadelphia	 temperature
sonification.	Now	the	pitch	mapping	still	isn't,	I	don't	believe,	identical	just	based	on	the
way	that	Astronify	maps	pitch,	but	this	gives	us	a	 little	bit	more	of	a	comparison.	Now
playing	 those	 two	sonifications	side	by	side,	we	can	definitely,	definitely	hear	 that	 the
average	 temperature,	 like	 in	 general,	 the	 temperature	 in	 Delhi	 is	 higher	 than	 the
temperature	in	Philadelphia	because	the	pitch	is	so	much	higher	in	that	sonification.

(1:22:01	-	1:22:12)

Now	 I	 personally	 think	 that	 this	 sonification	 with	 the	 higher	 pitches	 doesn't	 sound	 as
good.	It's	not	as	informative	either.	You	can't	hear	like	the	changes	between	seasons	as
clearly.

(1:22:13	-	1:22:46)

There	 is	 quite	 simply	 a	 reason	 that	 Astronify,	 the	 Astronify	 team	 chose	 to	 map	 the
pitches	 in	 the	 way	 they	 did,	 that	 those	 defaults	 are	 set	 the	 way	 they	 are,	 and	 it's



because	it	generally	makes	a	pretty	good	sound.	I	might	be	a	little	biased	because	I	was
involved	 in	 the	usability	 testing	 for	Astronify,	but	 there	 is	a	 reason	 that	 those	defaults
are	the	way	they	are.	So	I'm	not	necessarily	telling	you	that	when	you	have	to	change
the	pitch	scaling	and	like	the	zero	point	every	time,	I'm	not	telling	you	to	do	that.

(1:22:46	-	1:23:19)

I'm	telling	you	to	be	aware	of	the	fact	that	if	you	are	comparing	two	sonifications	that	the
scaling	might	 be	 different,	 and	 that	 is	 no	 different	 from	 a	 visualization,	 wherein,	 you
know,	for	instance,	a	plotting	sort	of	software	like	Matplotlib	will	scale	the	axes	of	your
visualization	automatically	based	on	the	points.	It's	something	to	be	aware	of.	We	need
to	 be	 a	 little	 bit	 more	 aware	 of	 it	 in	 a	 sonification	 than	 a	 visualization	 because
visualizations	generally	have	like	axis	labels	where	they'll	have	like,	you	know,	the	upper
and	lower	limits	of	the	axes	like	written	on	there.

(1:23:19	-	1:23:57)

We	don't	have	like	a	marker	in	the	sonification	for	like	what	the	upper	and	lower	values
are.	You	have	to	sort	of	go	and	check	the	data	yourself	to	do	it,	which	is	why	I	was	sort	of
harping	on	about	how	we	really	ought	to	do	that	with	our	data.	And,	you	know,	it's	just
something	really	to	be	aware	of,	more	or	less.

I'm	 really	 interested	 in	 this	problem	of	 sort	of	axis	 labeling	 in	 sonification.	How	do	we
give	people	that	information.	So	if	you	have	thoughts	about	it,	feel	free	to	pop	by	office
hours	or	to,	you	know,	shoot	me	an	email.

I'm	always	happy	to	chat	about	that.	It's	something	I'm	very	interested	in.	But	for	now,	I
just	want	to	make	you	aware	of	it.

(1:23:57	-	1:24:44)

All	right.	Sonification	scaling.	Check.

Any	questions	 in	 the	room?	 In	practice,	how	often	do	you	have	to	do	this,	 like	scaling,
tuning?	Is	this	like	something	that	you	like	listen	to	the	sound	from	like	multiple	scales?
Or	what's	practice	look	like	for	you?	Um,	so	for	me,	personally,	like	when	in	my	daily	life,
the	 honest	 answer	 is	 that	 the	 computer	 I	 use	 daily	 won't	 install	 Astronify.	 That's	 the
honest	answer.	That	is	the	most	honest	answer.

(1:24:45	-	1:25:30)

In	 terms	 of	 what	 I	 expect	 back	 from,	 you	 know,	 when	 I	 had	 a	 computer	 that	 ran
Astronify,	you	might	have	noticed	like	when	I	opened	the	terminal,	it	says	Rob,	because
I'm	borrowing	my	 friend	Rob's	 computer.	 Thank	you,	Rob,	hero	of	 these	 tutorials.	Um,
that	sounded	like	sarcasm,	but	I	mean	it	seriously.



Anyway,	back	when	I	had	a	computer	that	ran,	that	ran	Astronify	properly,	you	know,	it's
going	 to	 depend	 on	 a	 couple	 of	 things.	 I	 mean,	 realistically,	 I	 personally	 probably
wouldn't	 fiddle	with	 them	too	much,	 in	part	because	 I	 think	Astronify,	 the	way	 it	maps
things	by	default	does	give	you	the	best	sound.	And	regardless,	you're	going	to	have	to
check	sort	of	your	maximum	and	minimum	values	anyway	to	sort	of	know	where	you're
sitting	in	terms	of	data	values.

(1:25:30	-	1:25:43)

It's	going	to	kind	of	depend	on	your	goal	as	well.	Like	 if	your	goal	really	 is	to	compare
two	things,	then	yeah,	you	might	want	to	fiddle	around	with	this.	But	 if	not,	you	know,
it's	really	going	to	depend	on	what	your	goals,	what	you	want	to	do.

(1:25:44	-	1:26:32)

There	might	be	other	parameters	in	the	sonification	that	are	more	typically	changed.	So
in	 our	 next	 little	 subsection	 right	 now	 we're	 going	 to	 talk	 about	 an	 invert	 pitch	 map
argument	where	we	like	flip	the	pitches.	I'll	get	into	that	in	a	second.

But	I	know	that	I	think	other	usability	testers	found	that	like	quite	useful	just	regularly	to
sort	of	flip	the	pitches,	based	on	the	use	cases	that	Astronify	is	built	for,	which	is,	if	you'll
recall	from	last	week,	these	light	curves,	this	type	of	astronomical	data.	So,	it's	going	to
be	a	mix	of	like,	what	are	your	goals	and	what	are	your	preferences,	realistically.	Thank
you.

(1:26:32	-	1:26:53)

All	right,	I	hear	silence	in	the	room.	So,	let's	get	cracking	on	the	next	bit.	The	only	thing
to	do	is	to	sonify	something	else.

(1:26:53	-	1:27:06)

"Speech	mode	beeps.	Speech	mode	talk."	Thank	you.

All	right.	Next,	let's	sonify	a	very	famous	city's	temperature.	Let's	sonify	New	York	City's
daily	temperature.

(1:27:06	-	1:27:20)

I	am	going	to	call	this	one	Soni	underscore	NYC	because	I	do	not	want	to	type	New	York
City	every	time.	Too	many	letters.	And	now	Patrick	can	tell	us	whether	these	values	are
reasonable	because	Patrick	knows.

(1:27:21	-	1:27:48)

So,	I've	been	to	New	York	before.	All	right,	let's	do	Sonny	underscore	NYC.	S-O-N-I-N-Y-C.



Sonny	 underscore	 NYC,	 space	 equals	 space.	 Space	 equals	 space.	 Hopefully	 this	 is
starting	to	get	familiar.

We're	going	to	call	the	sauna	series	class	again.	We're	making	a	new	instance	of	it	with
the	New	York	data.	So,	remember	those	capital	S's	in	sauna	series.

(1:27:48	-	1:28:01)

"S-O-N-I-S-E-R-I-E-S."	Open	your	parentheses.	"Left	paren."	Type	T-B-L	for	table.	"T-B-L."
Hit	comma.

(1:28:01	-	1:28:25)

"Comma."	Space.	"Space."	We	want	to	specify	our	time	column	or	time	underscore	call
equals	time	step.	Again,	remembering	those	quotation	marks	around	time	step.	"T-I-M-E
line	C-O-L	equals	tick	T-I-M-E-S-T-E-P."	Close	your	quotation	marks.	Tick.	Hit	a	comma.

(1:28:25	-	1:28:46)

"Comma."	 Hit	 space.	 "Space."	 And	 now	 we	 want	 to	 specify	 our	 value	 column	 or	 val
underscore	call.	"C."	Nope,	not	C.	"Val	C-O-L	equals	N."	Now	it's	trying	to	finish	for	me.
Nope.

Me	first.	Val,	V-A-L.	"V-A-L."	Underscore	call.	"Line	C-O-L."	Equals.

(1:28:46	-	1:28:51)

"Equals."	Quotation	mark.	New	York	City	Temp.

(1:28:51	-	1:29:00)

That's	New	underscore	York	underscore	City	underscore	Temp.	Close	quotation	marks.
You	can	see	why	I	wanted	to	abbreviate	it	to	NYC.

(1:29:00	-	1:29:21)

"Tick.	N-E-W	line	Y-O-W."	Nope,	not	W.	"W-R-K."	New	York.	New	underscore	York.	"Line	C-
I-T-Y	line	T-E-M-P."	Tick.	Right.	All	right.

(1:29:21	-	1:29:29)

That's	SONI	underscore	NYC	equals	SONI	series	with	those	capital	S's.	Open	parentheses.
T-B-L.

(1:29:30	-	1:29:36)

Comma.	 Time	 underscore	 call	 equals	 in	 quotation	 marks	 time	 step.	 Close	 quotation
marks.



(1:29:37	-	1:29:40)

Comma.	Space.	Val	underscore	call.

(1:29:40	-	1:29:44)

C-O-L.	Not	call	like	phone	call.	Call	like	column.

(1:29:44	-	1:29:54)

Val	underscore	call	equals	open	quotation	marks.	New	underscore	York	underscore	City
underscore	Temp.	Close	your	quotation	marks.

(1:29:54	-	1:30:03)

Close	your	parentheses	and	hit	enter.	"In	34."	So	we've	just	made	a	new	instance	of	the
SONNY	series	object	for	the	New	York	City	temperature.

(1:30:04	-	1:30:24)

All	right.	Next,	this	should	be	familiar.	SONI	underscore	NYC.	"S-O-N-I."	Underscore	NYC.
"Line	 NYC."	 Dot	 SONIFY.	Map	 our	 values	 to	 pitches.	 Dot	 S-O-N-I-F-Y.	 "Star."	 Nope,	 not
star.	Open	and	close	parentheses.

(1:30:24	-	1:30:38)

"Star.	 Left	 paren.	 Right	 paren."	 SONNY	 underscore	 NYC	 dot	 SONNIFY.	 Open	 and	 close
parentheses.	Again,	remember	we've	abbreviated	New	York	City	as	NYC	here	because	I
could	not	be	bothered	to	type	that	every	time.

(1:30:39	-	1:30:53)

"In	35."	And	then	SONI	underscore	NYC.	S-O-N-I-line-N-Y-C.	Dot	slay.	Dot	P-L-A-Y.	Open
and	close	the	parentheses.

(1:30:53	-	1:30:57)

"Left	paren.	Right	paren."	And	I'll	turn	off	NVDA	speech.

(1:30:57	-	1:32:17)

"Speech	mode	off."	And	we'll	hope	it	works	again.	All	right.

(1:32:17	-	1:32:28)

I'll	 stop	 that	 a	 little	 bit	 early.	 I	 just	 did	 that	 dot	 stop	 instead	 of	 dot	 play.	 But	 I'm
wondering	if	anyone	could	hear	‑‑	I'm	hoping	it	came	through	on	Zoom	because	I	could
hear	it	on	my	end,	though	it's	a	little	subtle.



(1:32:28	-	1:32:50)

Could	anyone	hear	in	there	that	there	is	this	odd	sort	of	low	note,	this	sort	of	bah,	bah,
bah,	 really	 low-pitched	 note	 that	 just	 sort	 of	 showed	 up	 again	 and	 again	 sort	 of	 at
irregular	 intervals?	Could	people	hear	that	over	Zoom?	We	heard	 it.	 I	was	wondering	 if
that	was	a	 really	 cold	day	or	 something,	 like	a	 sub	 zero	or	 something	 like	 that.	 Yeah,
yeah.

(1:32:50	-	1:33:05)

So	it	sounds	like	this	really	low	value	that's	like	coming	up	again	and	again	and	it's	like
kind	 of	 suspicious.	 Like	 it's	 the	 same	 pitch	 every	 time	 that	 I	 could	 tell	 it	 wasn't	 just
showing	up	in	the	winter.	So	it	has	to	be	like	sub	zero	in	the	summer.

(1:33:06	-	1:33:25)

That	sounds	a	little	questionable.	So	let's	check	to	see	whether	that	was	just	some	like
weird	 sonification	 effect	 because	 I	 know	we've	 had	 some	 crackling	 noises,	 you	 know,
things	have	been	a	 little	strange.	So	what	am	I	going	to	do?	 I'm	going	to	pull	out	 that
invert	pitch	thing	that	I	actually	just	mentioned	to	Tony.

(1:33:25	-	1:34:04)

So	built	into	Astronify	in	that	pitch	map	args	thing	that	we	used	before	is	another	option
called	invert,	which	basically	flips	the	pitches	such	that	now	lower	temperatures	will	be
represented	by	high	pitches	and	high	temperatures	will	be	represented	by	low	pitches.
Now,	this	made	a	lot	of	sense	given	the	use	case	for	Astronify,	what	they	were	trying	to
do	with	it.	But	it's	going	to	be	really	useful	for	us	here	because	I	think	that	those	really
low	notes	are	going	to	be	easier	to	hear	as	a	high	little	like	chime	basically	than	as	that
sort	of	like	sort	of	in	the	background	of	our	sonification.

(1:34:04	-	1:34:20)

So	let's	invert	our	pitches.	This	line	of	code	is	going	to	look	really	similar	to	what	we	did
to	 switch	 the	 zero	 point	 except	 instead	 of	 calling	 zero	 point	 here,	 we're	 going	 to	 call
invert.	So	it's	going	to	be	Sonny	underscore	NYC.

(1:34:21	-	1:36:23)

Oh,	 got	 to	 turn	 speech	 back	 on.	 "Speech	mode	 be	 speech	mode	 talk."	 All	 right,	 Soni
underscore	 NYC.	 Oh,	 and	 underscore	 NYC	 "line	 NYC"	 dot	 pitch	 mapper	 again	 we're
calling	that	pitch	mapper	the	way	we	bring	you	know	the	values	of	our	data	to	pitch.	"P.
I.	T.	C.	H.	Line"	dot	pitch	underscore	mapper	"M.	A.	P.	P.	E.	R".	dot	pitch	mapargs	A.	R.	G.
S.	"A.	R.	G.	S."	So	that's	Soni	underscore	NYC	dot	pitch	underscore	mapper	M.	A.	P.	P.	E.
R.	 dot	 pitch	 underscore	 map	 underscore	 args.	 Then	 open	 our	 brackets	 open	 our



quotation	mark.	And	in	this	case	we're	calling	the	pitch	map	argument	invert.	That's	I.	N.
V.	E.	R.	T.	Take	right	bracket	open	and	close	in	your	bracket	and	your	parentheses	not	in
that	order.	Wait	what	no	close	your	quotation	mark	in	your	parentheses.

I	am	struggling	with	these	today,	and	we're	going	to	set	this	equal	to	space	equals.	True
with	 a	 capital	 T.	 So	 set	 Soni	 underscore	NYC	 dot	 pitch	mapper	 dot	 pitch	map	 args	 in
brackets	 and	quotation	marks	 invert	 equals	 true	with	 a	 capital	 T	 capital	 T.	 R.	U.	 E.	 E.
Good	 grief	 T.	 R.	 U.	 E.	 Set	 the	 pitch	map	 invert	 argument	 equals	 true.	 So	 basically	 by
default	invert	is	false.

So	that	means	low	values	are	low	pitches.	That's	kind	of	intuitive	to	me	here.	We're	just
going	to	flip	it	around.

(1:36:24	-	1:43:56)

"In	38"	 and	hit	 enter.	And	 then	we're	going	 to	 signify	Soni	 underscore	NYC	S.	O.	N.	 I.
Underscore	NYC	 line	and	N.	Y.	C.	Dot	 signify	dot	S.	O.	N.	 I.	 F.	 Y.	Open	and	close	your
brackets	or	your	parentheses	not	your	brackets.	Left	parent	right	parent.

So	Sonny	underscore	NYC	dot	sonify	open	and	close	those	brackets	and	hit	enter	"in	39."
So	now	we've	remapped	our	values	to	pitches	with	that	new	invert	parameter	and	then
Soni	underscore	NYC	"S.	O.	N.	 I.	Dot.	N.Y."	Sorry	not	dot.	Not	dot	Soni	underscore	NYC
"line	and	N.	Y.	C."	Dot	play	"dot	P.	L.	A.	Y.	left	paren	right	paren"	open	and	close	those
parentheses.	And	then	you	can	just	hit	enter.

I'm	going	to	turn	off	NVDA	again	speech	mode	off	and	I	might	stop	and	you	know	I	might
not	make	us	listen	to	this	whole	thing	I	want	us	to	hear	the	notes	again	and	remember
we	 flipped	 the	pitches	 so	 I	would	now	expect	 those	 low	notes	 if	 they're	not	 some	 like
audio	effect	from	the	sonification	to	show	up	as	rather	obvious	high	notes.	All	right,	 I'll
stop	that	early	because	I	think	we've	heard	quite	a	few	of	them	those	little	Those	high
notes	 that	are	 in	 fact	 the	 same	high	note.	So	 it	 sounds	 like	 the	 same	pitch	kind	of	 at
random	intervals	to	me.

So	 again,	 remember	 that	 high	 note	 is	 is	 is	 low	 values	 because	 we've	 inverted	 the
pitches.	 What	 gives	 why	 is	 that	 in	 there?	 What	 is	 it	 like?	 Are	 there	 a	 bunch	 of	 like
negative	 10	 degree	 days	 in	 New	 York	 City?	 Well,	 my	 first	 question	 is	 again	 like	 we
learned	last	time.	We	didn't	really	check	the	scaling	of	this	thing.

Like	maybe	the	whole	New	York	City	temperature	column	is	totally	just	like	a	mess.	So
let's	 check	 the	 average	 temperature	 in	 New	 York	 City	 first	 to	 see	 whether	 that	 looks
roughly	 acceptable	 "speech	 mode	 beeps	 speech	 mode	 talk."	 Hopefully	 this	 is	 sort	 of
familiar.

This	is	going	to	be	df	dot	new	underscore	York	line.	Okay.	Nope.



df.new_york_city_temp.mean()	 open	 and	 close	 parentheses	 "out	 41,	 55.6406152185
56449	in	42."	Right.	So	the	average	temperature	in	New	York	City	is	55.6	degrees.

That's	 kind	 of	 "selected."	 Whoops.	 Oh	 no.	 "Unselected"	 the	 so	 so	 that's	 what	 like	 a
degree	ish	lower	than	the	average	temperature	in	Philadelphia	so	that	that	doesn't	seem
too	questionable.	So	let	me	check.	We	know	that	those	high	notes	we	were	hearing	are
low	values	because	we	flipped	the	pitches.

So	let's	check	the	minimum	temperature	in	this	column	and	see	what's	going	on.	Oh,	so
that's	going	 to	be	df	dot	new	underscore	York	underscore	 city	underscore	 temp	again
because	in	our	data	frame	this	column	is	called	New	York	City	temp	and	then	it's	going
to	be	dot	min	open	and	close	parentheses	 line.	"df.new_york_city_temp.mean()	out	42,
minus	99.0,	in	43."

Whoa,	minus	99	degrees	Patrick	does	it	ever	get	down	to	minus	99	degrees	in	New	York
City.	Yeah,	you	see	the	bricks	exploding.	So	what's	going	on	why	are	there	negative	99
in	our	data.

Well,	what	turns	out	is	happening	is	that	there	are	some	days	where	we	don't	have	data
for	the	temperature	in	New	York	City,	and	in	this	particular	data	set	they	said	well	we	got
to	put	something	there	we	have	to	put	something	well,	well	let's	just	put	a	value	that	no
one	will	think	it	actually	gets	to	 it	 in	New	York	City	yeah	negative	99	degrees	no	one's
gonna	think	it	gets	to	negative	99	degrees	that's	fine.	Just	fill	all	the	empty	spaces	with
negative	99,	but	a	stratify	has	no	way	of	knowing	that	the	people	in	this	that	made	this
data	 set	 we're	 like	missing	 value,	 negative	 99.	 So	 it	 just	 goes	 on	 its	 merry	 way	 and
solidifies	it,	which	is	why	we're	hearing	this	sort	of	repeated	identical	tone.

It's	because	every	 time	 there's	a	missing	data	point	 is	 solidifying	 it	as	 if	 it's	 real	data.
Now	in	the	spirit	of	complete	transparency.	All	of	 these	columns	originally	had	missing
data.

And	for	the	columns	we	have	already	solidified	here	so	that	we	have	something	nice	and
clean	to	work	with.	I	basically	replaced	those	missing	values	with	a	method	that	we	call
linear	interpolation.	I'm	not	going	to	get	into	that	right	now.

If	you're	curious	about	how	I	sort	of	pre	process	the	data	to	make	it	usable	for	us	here.
Feel	free	to	reach	out	to	me	and	I'll	sort	of	just,	you	know,	fling	the	dot	py	scripts	I	use
that	you	and	you	can	take	a	look	at	it,	but	all	of	the,	you'll	often	find	in	real	data	that	we
have	missing	values.	This	is	sort	of	like	a	fact	of	life	when	you	work	with	data	that	there's
going	to	be	missing	values.

Sometimes	it'll	be	filled	with	some,	you	know,	some,	you	know,	impossible	numbers	so
that	you	can	easily	identify	all	that's	not	real	data,	as	they've	done	here,	but	sometimes
what	you'll	see	in	data	science,	especially	in	Python,	is	you'll	see	missing	values	filled	in



as	something	we	call	an	NAN,	or	you'll	sometimes	hear	people	call	it	NONs	or	NANs.	I	call
them	NONs,	my	office	mates	make	fun	of	me	because	they	call	them	NANs,	but	they're
NANs,	or	more	accurately	a	NumPy	NAN.	The	pandas	has	its	own	version	too.

What	is	this	NAN	thing?	It	stands	for	not	a	number.	And	so	often	if	you	have	like	a	blank
space	in	a	data	frame,	it	will	just	get	parsed	as	a	NAN,	a	NAN,	as	a	not	a	number,	there's
not	a	number	there.	Now,	a	lot	of	functions,	especially	like	pandas	and	NumPy	functions
are	sort	of	accustomed	to	these	NAN	things,	these	missing	value	placeholders,	and	will
sort	of	ignore	them	in	the	way	you'd	hope.

(1:43:56	-	1:47:03)

But	sometimes	they	will	wreak	havoc	on	some	functions,	and	then	you'll	spend	forever
like	hunting	through	your	data,	where's	the	missing	value,	where	is	it,	oh	my	goodness.
Fortunately,	there's	a	really	quick	and	easy	way	to	check	whether	or	not	our	data	has	an
NAN,	 a	 not	 a	 number,	 this	 like	 not	 an	 actual	 number	 value	 in	 it.	 And	 that	 is	with	 the
NumPy	is	non	or	is	NAN,	is	N-A-N	function.

So	if	we	do	NumPy,	N-U-M-P-Y,	dot	is,	dot	I-S,	N-A-N,	N-A-N.	So	all	one	word,	NumPy,	dot
is	N-A-N,	open	your	parentheses,	"left	paren",	D-F,	"D-F",	dot	New	York	City,	D-F	dot	new
underscore	 York	 underscore	 city	 underscore	 temp,	 so	 calling	 that	 column	 of	D-F	with,
with,	you	know	the	New	York	City	temperatures	in	it.	"Dot,	N-E-W,	line,	Y-O-R-K,	line,	C-I-
T-Y,	 line,	 T-E-M-P,	 right	 paren."	 So	 that	 should	 read	 NumPy	 dot	 is	 N-A-N,	 open
parentheses,	 D-F	 dot	 new	 underscore	 York	 underscore	 city	 underscore	 temp,	 close
parentheses.	So	basically,	please	NumPy,	check	 if	 there	are	nons	 in	this	column	of	 the
data	frame,	and	hit	enter.	All	right,	I'm	not	going	to	let	it	finish.

But	what	it	gives,	that's	a	lot	of	falses.	Well,	what	it's	doing	is	it's	giving	us	an	array,	like
a,	you	know,	like	a	big	old	chunk	of	values,	what	we	remember	learning	from	Patrick	are
Booleans,	so	true	or	false	values.	It	has	the	exact	same	shape	as	this	column.

So	we	said,	hey,	check	if	this	column	has	NANs,	and	it's	returning	a	Boolean	array	of	the
same	 shape	 as	 the	 column	 we	 asked	 it	 to	 check,	 where	 it	 says	 false	 at	 any	 location
where	there	is	not	a	NAN,	so	there's	not	a	number.	And	if	there	is	a	position	where	there
is	a	NAN	in	that	data	frame	or	that	column	we	had	it	check,	it	will	return	true.	Okay,	but	I
don't	know	about	you,	but	I	do	not	want	to	read	9,265	rows	of	falses	to	check	whether
there's	a	single	true	in	there.

That	sounds	horrendous.	What	will	we	do	instead?	We're	going	to	call	the	.any	function.
So	if	we	type	that	exact	same	line	that	we	just	did,	and	then	tack	a	.any,	open	and	close
parentheses	at	the	end,	that'll	tell	us	whether	there	is	a	single	true	value	in	that	array.

(1:47:03	-	1:48:15)

So	basically,	even	if	9,264	of	those	values	are	false	and	one	of	them	is	true,	then	.any



will	 return	 true.	 So	basically	 say,	 are	 there	 literally	 any	NAN	values	 in	here?	So	 that's
going	to	be	numpy.isnan(df.new_york_city_temp)	And	it's	trying	to	tell	me,	yes,	you	want
to	 do	 .any,	 and	 it's	 right	 this	 time.	 numpy.isnan,	 open	 parentheses,
df.new_york_city_temp,	 close	parentheses,	 and	 then	add	at	 the	end	 .any.	And	 call	 the
open	and	close	those	parentheses,	leave	them	empty,	and	hit	enter.

(1:48:16	-	1:49:18)

Out,	 false.	 There	 is	 not	 a	 single	 true	value	 in	 the	 return	of	 that	 isNAN	 function,	which
means	there	are	no	NANs,	no	not	a	numbers	in	this	array.	That's	a	good	thing,	because	if
there	were	missing	values	and	they	were	at	random	filling	some	with	negative	99.0	and
others	with	NAN,	I	would	be	upset.

That	would	be	messy.	But	when	dealing	with	 real	data,	 it's	good	 to	know	the	different
formats	you	could	get	these	sort	of	missing	values	as.	So	we've	checked	now,	there	are
no	NANs	 in	our	data,	good	to	know,	but	we	have	these	missing	values,	 these	negative
99.0s.	What	 if	 I	 do	not	want	 those	 little	 chimes	 in	my	data?	What	 if	 I	 say,	 that's	 very
annoying,	please	get	rid	of	them?	Well,	fortunately,	actually,	before,	this	 is	going	to	be
the	last	bit	we	cover	in	this	tutorial.

(1:49:18	-	1:50:52)

So	before	 I	do	 this	 last	bit,	would	anyone	 like	 to	ask	questions?	 I	get	ahead	of	myself.
Any	questions	repeatedly	coming	up	or	otherwise	we	will	hurdle	through	the	last	section
of	the	tutorial.	I'm	hearing	silence.

So	let	us	get	a	move	on.	All	right,	let's	do	this	last	portion.	All	right.

So	as	I	said,	what	if	we	don't	want	those	little	chimes	for	those	negative	99.0s	in	the	data
that	 are	 just	 sort	 of	 there?	 What	 do	 we	 do?	 Well,	 fortunately,	 another	 pitch	 map
argument	that	they	call	min-max	percent	allows	us	to	sort	of	clip	outermost	values	from
the	values	we're	sonifying	from	the	sonification.	So,	for	instance,	suppose	I	set	the	min-
max	percent	equal	to	5,95.	That	means	that	anything,	the	5%	lowest	values	in	the	data
are	going	to	be	excluded	from	the	sonification.

(1:50:52	-	1:51:09)

And	the	5%	highest	percent	of	the	data,	so	the	5%	greatest	values,	are	also	going	to	be
chopped	out	of	the	sonification.	Do	not	include	them.	Get	rid	of	those.

We	do	not	want	them	here.	Cut	them	out.	They	are	extraneous	values.

(1:51:10	-	1:51:23)

So	we	can	just	chop	out,	you	know,	we	know	these	are	really	low	values.	Chop	out,	you
know,	the	lowest	some	percent	of	our	data.	Get	rid	of	them.



Don't	 include	 them	 in	 the	 sonification.	 Please,	Astronify,	 get	 rid	 of	 them.	And	 then	 re-
sonify	the	thing.

(1:51:25	-	1:51:35)

So	let's	get	into	that.	It's	going	to	look,	again,	very	similar	to	when	we	change	that	invert
equals	true.	It's	also	going	to	look	very	similar	to	when	we	change	that	zero	point.

(1:51:35	-	2:22:12)

It's	 going	 to	 be	 soni	 underscore	 nyc	 dot	 pitchmapper	 dot
pitch_map_args['minmax_percent']	 ...	 ...	 close	 your	 quotation	 marks	 tick	 close	 your
bracket	 right	 bracket	 so	 that	 is	 soniunderscore	 nyc	 dot	 pitch	 underscore	mapper	 dot
pitch	underscore	map	underscore	args	a	r	g	s	open	your	brackets	open	your	quotation
marks	min	m	i	n	max	m	a	x	underscore	percent	close	your	quotation	marks	close	your
brackets	hit	space	space	hit	equals	space	and	then	this	is	going	to	be	equal	to	a	list	type
object	so	we're	going	to	make	a	list	it's	going	to	have	two	numbers	in	it	our	lower	bound
and	 our	 upper	 bound	 now	 i'm	 going	 to	 make	 our	 lower	 and	 i'm	 going	 to	 put	 this	 in
brackets	because	it's	a	list	left	bracket	so	open	our	brackets	i'm	going	to	make	our	lower
bound	five	"five"	what	does	that	mean	it	means	chop	out	the	five	percent	like	the	lowest
five	percent	of	our	data	because	i	think	that	should	chop	out	those	negative	99s	for	us
now	there	is	also	a	min	max	value	where	you	could	cut	out	at	exact	values	um	there's	a
in	 the	 in	 the	 curriculum	 there's	 a	 description	 of	 the	 astronomy	 parameters	 that	 talks
about	this	in	detail	i	tested	it	i	the	way	min	max	percent	sounded	a	little	better	so	we're
gonna	stick	with	that	um	so	that's	going	to	be	equals	open	bracket	 five	to	cut	out	 the
five	 percent	 lowest	 data	 five	 comma	 comma	 space	 because	 we	 want	 to	 specify	 the
upper	 limit	and	 i'm	not	concerned	about	 the	upper	 limit	here	because	uh	because	 the
missing	 values	 are	 negative	 99s	 um	 we	 probably	 for	 the	 sake	 of	 completeness	 here
really	 should	 have	 checked	 the	maximum	 value	 in	 uh	 the	 new	 york	 city	 temperature
column	uh	you	know	to	make	sure	there	was	nothing	really	funky	going	on	there	um	but
uh	for	now	take	my	word	for	 it	the	missing	values	are	those	low	numbers	also	again	 it
would	be	chaos	if	they	had	missing	values	and	filled	them	with	like	negative	99	and	like
a	thousand	that	would	be	incredibly	rude	of	them	if	you	ever	make	a	data	set	don't	don't
do	that	that's	horrible	um	okay	so	then	i'll	do	five	comma	space	100	1	0	0	so	basically
that	means	go	up	to	the	hundredth	percentile	go	up	to	the	maximum	value	of	the	data
don't	cut	off	anything	at	the	upper	end	"right	bracket	in	46"	all	right	so	we've	changed
the	min	max	percent	again	that's	going	to	be	soni	underscore	nyc	dot	pitch	mapper	dot
pitch	map	args	with	a	pitch	underscore	map	underscore	open	your	brackets	open	your
quotation	marks	min	max	percent	with	the	um	with	an	underscore	between	min	max	and
percent	 close	 quotations	 close	 brackets	 equals	 open	 brackets	 five	 comma	 space	 100
close	your	brackets	hit	enter	again	we're	just	chopping	off	the	five	percent	lowest	data
out	of	 our	 sonification	hit	 enter	 all	 right	 again	we	need	 to	 remap	 the	data	 to	pitch	 so
that's	uh	soni	underscore	nyc	dot	sonify	s	o	n	i	line	sonny	underscore	nyc	and	n	y	c	dot



sonify	dot	s	o	n	i	f	y	open	and	close	your	parentheses	"left	paren	right	paren	in	47"	and
then	soni	nyc	dot	play	"s	o	n	i	line	n	y	c	dot	p	l	a	y	left	paren	right	paren"	and	remember
before	i	hit	play	here	before	i	hit	enter	on	sonny	underscore	nyc	dot	play	recall	that	we
have	 still	 inverted	 the	 pitches	 you	 haven't	 uh	 changed	 invert	 equals	 false	 um	 so	 just
keep	 in	 mind	 here	 that	 uh	 that	 you	 know	 higher	 pitches	 are	 still	 representing	 lower
temperatures	 that's	 okay	 here	 because	 i	 think	 what	 we're	 interested	 in	 is	 hearing
whether	those	notes	are	sort	of	cut	out	and	i	think	they're	at	least	for	me	they're	easier
to	hear	as	higher	pitches	maybe	for	you	they're	easier	to	hear	as	lower	pitches	but	just
keep	that	in	mind	that	we	haven't	changed	that	argument	so	it's	still	there	all	right	let's
hit	play	oh	let	me	turn	off	npda	speech	speech	mode	off	all	right	here	we	go	i've	stopped
that	 but	 mostly	 even	 though	 i	 hear	 some	 like	 sort	 of	 high	 pitch	 like	 almost	 kind	 of
squeaky	noises	that	aren't	super	pleasant	they're	not	those	individual	notes	that	are	like
those	so	i'm	not	hearing	anymore	those	really	high	pitched	single	notes	the	same	pitch
at	sort	of	 random	 intervals	sounds	better	 to	me	 though	again	 feel	 free	 to	play	around
with	 the	min	max	percent	 like	where	you	put	 that	 cut	 off	 if	 you're	 interested	um	 that
concludes	our	discussion	on	missing	values	and	also	looking	at	the	time	it	 includes	our
discussion	our	tutorial	for	today	because	it's	8	p.m	i	will	say	there's	even	more	material
available	online	for	the	curriculum	some	model	testing	um	so	if	you're	curious	about	that
i	highly	encourage	you	to	go	check	that	out	there's	also	discussion	of	astronafi's	different
um	arguments	 i	 just	 figured	 i'd	 rather	provide	more	material	online	 than	we	could	get
through	because	um	you	know	i'd	rather	you	guys	have	more	to	work	with	than	less	so	if
you're	curious	 to	go	 through	a	 little	more	 there's	more	online	on	 the	curriculum	which
was	 sent	 in	 the	 email	 today	 um	 and	 i'm	 happy	 to	 stick	 around	 and	 answer	 questions
anything	like	that	um	i	will	uh	i'll	leave	my	screen	sharing	for	the	moment	in	case	there
are	any	coding	questions	before	we	wrap	up	all	right	i'm	gonna	stop	sharing	screen	then
because	 i'm	not	 hearing	 coding	 questions	 i'm	hearing	 silence	 and	 then	 i'll	 i'll	 turn	my
camera	back	on	wow	i'm	here	again	all	right	well	i'd	just	like	to	say	thank	you	sarah	for
walking	us	through	both	 last	week	and	this	week	and	for	 introducing	us	to	this	 idea	of
sonification	um	i	guess	i	do	have	a	question	for	you	you	know	and	i'll	first	just	you	know
say	you	know	we're	out	of	time	so	if	anyone	wants	to	uh	to	hop	off	the	call	maybe	you
have	another	uh	meeting	or	something	like	that	uh	maybe	you	want	to	eat	dinner	then
um	then	you	know	thank	you	i'll	just	say	a	thank	you	for	joining	us	and	thank	you	for	uh
for	 spending	 time	 learning	 some	 of	 these	 non-visual	 data	 science	 techniques	 um	 but
sarah	i	did	have	a	question	which	i	guess	is	maybe	you	could	give	us	the	your	um	your
opinion	on	the	state	of	sonification	or	making	sonifications	and	like	if	you	think	things	are
going	to	um	get	a	you	know	a	little	more	stable	or	a	 little	more	interesting	in	the	next
couple	years	like	what's	next	for	sonification	yeah	okay	this	is	this	is	a	really	interesting
question	and	it's	a	tough	one	to	answer	i	think	at	least	within	astronomy	which	is	where
i'm	most	familiar	there's	a	lot	of	 interest	in	sonification	um	there's	kind	of	been	like	an
explosion	 of	 sonification	 sort	 of	 outreach	 things	 and	 and	 softwares	 to	 do	 things	 and
inherently	with	interest	comes	improvement	um	however	another	necessarily	necessary
thing	for	improvement	is	like	community	cohesion	and	money	um	and	so	there	has	to	be



i	 think	 you've	 talked	 about	 like	 these	 project	 grants	 that	 you	would	 love	 to	 see	 from
other	 you	 know	 organizations	 like	 there	 needs	 to	 be	 like	 some	money	 put	 into	 these
things	so	that	people	have	like	the	funding	to	sort	of	make	things	more	stable	and	also
make	things	more	standardized	i've	taught	you	how	to	use	astronify	here	but	a	different
sonification	 software	might	 sonify	 things	entirely	differently	 so	 i	would	 say	 in	 terms	of
there	i	i	think	of	sonifications	in	roughly	two	aspects	sort	of	these	like	beautiful	outreach
sonifications	 that's	kind	of	 like	 the	universe	of	 sound	sonification	 that	 i	played	 for	you
last	week	where	 it	was	 like	 that	 galactic	 center	 sonification	 i	 think	 those	 are	 in	 really
good	 shape	 people	 really	 like	 those	 um	 people's	 responses	 to	 those	 are	 really	 high
they're	really	great	for	outreach	and	community	engagement	including	among	the	blind
low	vision	community	things	look	good	for	outreach	for	the	more	technical	sonifications
such	as	astronify	which	are	meant	for	doing	research	doing	science	i	think	that's	when
things	get	a	little	more	shaky	i	think	things	get	um	yeah	a	little	more	experimental	but
again	i	think	with	more	interest	in	these	things	comes	more	improvement	i've	talked	to
um	i've	talked	to	people	who	are	interested	in	and	working	on	these	things	i	think	part	of
the	problem	 is	 again	a	 lot	 of	 the	 funding	 for	 sonification	 is	 still	 in	 this	 outreach	 realm
which	helps	get	 that	moving	quicker	 just	 in	what	 i've	seen	and	and	you	know	 i	 i	don't
have	all	the	answers	i	think	things	are	going	to	get	better	inherently	just	because	there
are	people	interested	how	quickly	i	don't	know	um	that	said	i	do	know	and	you	also	know
the	 people	 at	 space	 telescope	 science	 institute	 who	make	 astronify	 um	 and	 they	 are
awesome	 cannot	 say	 enough	 good	 things	 about	 them	 so	 if	 there	 are	 problems	 with
astronify	in	particular	do	like	you	know	reach	out	to	them	uh	submit	something	on	github
their	email	is	on	um	uh	like	there's	an	email	on	the	astronify	website	which	is	linked	in
the	 curriculum	 like	 get	 in	 touch	 with	 them	 they're	 they're	 wonderful	 people	 um
realistically	 i've	 actually	 probably	 should	 have	 reached	 out	 to	 them	 to	 ask	 about	 the
whole	mac	install	issue	um	which	maybe	i	still	could	do	and	update	everyone	but	um	on
the	astronify	 in	particular	front	they're	uh	they're	wonderful	so	yeah	yeah	scott	 is	very
nice	thank	you	yeah	um	and	i	would	say	just	to	add	to	that	i	mean	i	think	that	it's	kind	of
the	non-fun	parts	of	making	these	libraries	is	kind	of	the	issue	you	know	which	is	making
sure	that	the	sound	is	compatible	across	every	os	and	then	also	maybe	that	there's	like
fallbacks	if	you	know	if	it's	not	creating	you	know	so	then	that's	not	really	the	fun	kind	of
programming	that's	kind	of	the	kind	of	programming	programmers	didn't	exist	so	i	think
that	 does	 definitely	 requires	 to	 pay	 somebody	 to	 sit	 and	 test	 and	 run	 it	 on	 a	 lot	 of
different	 os's	 and	 even	 getting	 your	 hands	 on	 a	 bunch	 of	 different	 computers	 kind	 of
costs	money	so	um	but	yeah	i	would	i'm	hoping	that	it	does	uh	we	do	get	a	nice	stable
library	 um	 or	 maybe	 it's	 going	 to	 be	 a	 strong	 fire	 um	 cool	 anyone	 else	 have	 any
questions	for	sarah	i	think	maybe	that's	a	hand	raised	so	you	want	to	hop	on	the	mic	you
can't	tell	who	it	is	but	is	that	rosanna	rosanna	it	is	i	had	asked	this	in	the	chat	uh	but	i
had	to	leave	so	i	didn't	get	the	answer	if	 it	was	given	but	uh	can	you	remind	me	when
these	uh	office	hours	are	and	if	they're	the	same	link	as	what	i	got	on	as	what	this	was
the	same	link	and	they	are	going	to	be	on	now	on	thursday	at	the	same	time	of	day	as
this	tutorial	so	that's	1	p.m	eastern	time	6	p.m	gmt	um	thursday	and	then	that	will	be



the	last	office	hours	um	sadly	but	you	know	we	will	always	be	available	by	email	i	can't
because	i	want	to	try	it	uh	i	don't	know	why	but	when	i	did	it	uh	with	last	week	following
your	instructions	for	last	week	it	did	not	play	sound	for	me	did	not	did	it	play	this	week
this	not	this	week	either	well	i	didn't	i	wasn't	able	to	follow	along	this	week	i	did	it	after
the	 fact	 last	week	 all	 right	well	 are	 you	 on	 a	windows	 computer	 yes	 all	 right	 let's	 go
through	yeah	do	you	try	 to	come	to	office	hours	on	thursday	and	we	can	troubleshoot
together	 or	 send	me	an	email	 and	we'll	 take	a	 look	 together	um	yeah	 sometimes	 the
terminal	is	a	little	laggy	with	astronify	um	that's	my	first	guess	that	you	know	it	might	be
like	this	like	turn	it	off	and	on	again	sort	of	issue	which	is	annoying	but	that	would	be	my
first	guess	but	yeah	we	can	we	can	diagnose	it	together	another	one	that	i'd	like	to	try	is
i've	been	on	a	weight	loss	program	and	i've	been	keeping	track	of	my	weight	you	know
every	week	i	want	to	try	to	make	a	sound	application	with	that	that	would	be	this	would
be	a	perfect	thing	for	that	actually	yeah	because	it's	that	sort	of	value	versus	time	um
that	works	really	well	for	for	astronify	so	yeah	give	it	a	try	you	just	sort	of	have	to	dump
it	 in	 like	a	well	you	have	 to	dump	 it	 in	a	 for	our	purposes	a	data	 frame	 first	and	 then
make	 that	 into	 an	 astropy	 table	 to	 give	 to	 astronify	 um	but	 yeah	 should	 be	 relatively
straightforward	yeah	this	type	of	thing	is	just	down	my	alley	i	love	perfect	stuff	thanks	a
lot	 thank	you	 for	 coming	 thank	you	 rosanna	does	anyone	else	have	any	questions	 for
sarah	while	we	have	her	a	lot	of	music	hi	i	do	have	a	question	hello	this	is	laura	hi	laura
hi	go	ahead	oh	i'm	just	gonna	ask	what	i	can	what	what	what	your	question	is	no	i	was
just	asking	are	you	gonna	have	any	more	classes	um	coming	up	any	more	series	well	i
will	 say	um	 that	you	know	we	we're	not	 really	a	 school	we're	a	 consultancy	 right	 so	 i
know	maybe	there's	an	opportunity	to	talk	a	little	bit	about	iota	just	briefly	at	the	end	of
everything	 again	 um	 you	 know	 we	 are	 a	 small	 consultancy	 um	 where	 we	 work	 on
technology	 you	 know	 technology	 including	 web	 technologies	 um	 curriculum
development	and	uh	and	very	kinds	of	writing	so	really	you	know	what	what	i	like	to	do
is	partner	with	an	organization	um	in	this	case	i	kind	of	brought	i	thought	that	this	should
exist	so	i	went	to	pandas	i	thought	they	would	be	a	good	partner	and	i	asked	them	you
know	could	you	would	you	work	with	us	to	create	something	for	this	community	and	they
said	 yes	 which	 was	 really	 amazing	 but	 you	 know	 it	 really	 it's	 very	 helpful	 to	 have
advocates	out	there	because	you	know	i'm	all	um	you	know	i	do	work	with	cool	people
like	sarah	um	and	a	bunch	of	others	a	couple	of	other	blind	folks	like	krishna	and	people
like	tony	um	you	know	who	are	my	colleagues	but	you	know	really	what	we	need	is	a	a
little	more	surface	area	to	um	if	you	thought	this	was	a	good	um	you	know	we	do	a	lot	of
i	love	to	make	curriculum	i	love	to	teach	people	stuff	if	you	thought	this	was	useful	you
know	send	an	email	to	um	you	know	whatever	blindness	organization	you're	closest	to
um	or	you	know	other	organizations	that	you	think	might	have	resources	to	kind	of	put
behind	this	and	the	reality	 is	um	you	know	i	 i	um	i	 i	used	to	do	a	lot	of	uh	this	kind	of
work	and	then	i	just	put	it	on	the	internet	and	do	it	for	free	for	people	and	that	you	know
i	that's	what	i	always	try	to	do	but	i	also	have	a	little	baby	at	home	here	now	and	i	do
need	to	try	to	uh	to	partner	with	people	to	bring	in	some	some	funding	to	do	this	kind	of
work	and	it	does	it's	very	time	consuming	uh	to	put	together	these	kinds	of	workshops



um	and	uh	so	yeah	so	yeah	if	you	if	you	have	any	ideas	about	organizations	to	to	put	me
in	touch	with	or	you	know	to	tell	them	to	reach	out	to	me	or	you	could	propose	it	yourself
and	just	say	loop	me	in	later	you	know	that's	what	we	do	so	and	and	i	guess	the	answer
is	maybe	hopefully	and	we	will	 try	 thank	you	very	much	cheers	 laura	 thank	you	and	 i
reached	out	also	so	maybe	excellent	i	think	yeah	i	think	i	have	an	email	from	you	and	i
just	haven't	responded	yet	no	problem	no	problem	remember	lots	of	emails	come	again
it's	 a	 very	 kind	 email	 and	 your	 email	 was	 a	 little	 longer	 so	 i	 wanted	 to	 do	 a	 more
substantial	 reply	 and	 i	 just	 haven't	 got	 no	 problem	 i	 totally	 understand	 it's	 been	 very
useful	especially	for	me	coming	from	data	science	i	wish	i	knew	this	before	like	i	had	this
series	before	i	went	to	data	science	especially	since	i'm	blind	it's	just	made	everything	so
much	easier	 you	did	a	master's	 correct	 i	 think	 i'm	 remembering	your	 yeah	 i	 know	 it's
very	appreciated	and	 i	 think	you	had	a	common	experience	which	 is	experience	 i	had
doing	my	phd	 too	which	 is	 if	you	don't	mind	me	saying	 i'm	sorry	uh	 that	you	we	bind
people	we	blind	and	vi	folks	were	often	uh	wind	up	spending	more	time	on	accessibility
than	on	 the	 thing	 that	we're	we're	actually	doing	um	which	 is	 fine	and	 then	everyone
calls	us	advocates	and	and	and	so	on	but	then	really	sometimes	we	actually	just	want	to
do	the	work	that	we	signed	up	to	do	so	it	can	be	a	little	frustrating	right	um	and	things
could	take	a	long	time	you	know	it	took	it	took	me	a	long	time	to	finish	my	phd	um	and
that's	 reality	 you	 know	but	 i	 guess	 hopefully	 at	 dinner	 you	 know	 i	was	 just	 talking	 to
another	blind	um	uh	uh	uh	you	know	technologist	uh	josh	melee	um	and	i	think	he's	at
amazon	 now	 but	 he	 uh	 he	 basically	 said	well	when	 i	was	 younger	 there	was	 no	 such
thing	as	a	screen	reader	so	you	know	what	i	mean	so	i	think	things	are	it	doesn't	almost
feel	like	it	but	but	maybe	things	are	improving	it's	just	a	little	slower	than	we	want	thank
you	yeah	thank	you	and	also	i	will	say	you	know	um	if	if	you	know	i've	been	talking	about
this	um	with	uh	some	others	but	basically	if	if	you	are	the	only	person	if	you're	a	person
in	 your	 community	 you've	 joined	 these	 workshops	 and	 you	 feel	 like	 you've	 gotten
something	out	of	it	maybe	you've	learned	a	few	things	and	you're	practicing	on	your	own
feel	 free	 to	use	 these	materials	 to	 teach	your	own	workshops	um	 i	have	to	 talk	 to	 the
pandas	folks	about	what	license	they	want	to	release	these	under	but	it's	an	open	source
project	 i	 have	 to	 imagine	 if	 it's	 remotely	possible	 i	will	 release	 these	under	a	 creative
commons	 license	 and	 i	 encourage	 you	 to	 to	 use	 them	 to	 teach	 if	 you	 want	 to	 lead
workshops	for	your	own	community	on	these	same	materials	i	very	much	encourage	you
to	you	don't	have	to	ask	for	permission	though	i	you	know	i	would	love	to	hear	about	any
work	 you	 do	 with	 these	 materials	 um	 so	 and	 you	 can	 build	 on	 them	 too	 if	 if	 we	 do
manage	to	put	the	creative	commons	license	on	it	um	which	you'll	see	an	update	on	that
in	 the	 repository	 if	 we	 manage	 to	 do	 that	 so	 um	 okay	 i	 mean	 anyone	 else	 have
something	 for	sarah	a	 lot	of	music	oh	 i	 i	have	 this	 is	 tim	and	 i	have	 just	a	 it's	a	more
general	question	these	classes	have	been	really	really	good	um	if	 i	want	to	learn	more
about	data	science	pandas	astronify	are	there	particularly	good	sources	to	go	look	at	to
learn	 more	 to	 dig	 deeper	 into	 these	 topics	 that	 sounds	 like	 maybe	 a	 sarah	 question
sonification	 specific	 or	 data	 science	 in	 general	 a	 lot	 of	 both	 actually	 well	 i'll	 give	my
answer	 and	 then	 maybe	 sarah	 will	 be	 able	 to	 to	 jump	 in	 i	 would	 say	 it's	 a	 little	 bit



different	 difficult	 to	 answer	 that	 question	 for	 data	 science	 in	 particular	 just	 because	 i
think	 there	 are	 limited	 materials	 specifically	 for	 the	 visually	 impaired	 i	 would	 say
something	one	avenue	is	to	try	to	get	good	at	python	and	the	and	whatever	environment
you	choose	to	use	whether	it	be	vs	code	ipython	um	so	i	would	recommend	joining	some
blindness	 related	 mailing	 lists	 um	 i	 i	 have	 a	 issue	 for	 this	 but	 i	 will	 be	 putting	 in	 a
resources	page	on	the	um	in	the	curriculum	i	haven't	actually	finished	it	i	started	it	but	i
haven't	finished	it	but	there	are	there	are	good	mailing	lists	like	python	viz	and	program
l	 i	 think	 is	what	 it's	called	which	are	very	active	mailing	 lists	 for	python	and	via	visual
impaired	programming	in	general	um	and	i	am	going	to	you	know	i've	just	paid	for	it	or
whatever	and	the	server	got	set	up	and	everything	so	we	should	have	in	the	next	day	or
two	a	new	mailing	 list	 for	 data	 science	unfortunately	 it	 does	 feel	 like	 very	1990s	with
these	technical	blindness	communities	you	know	in	terms	of	it's	very	mailing	list	driven	i
do	 think	 we	 there's	 a	 there's	 space	 here	 for	 that	 we	 could	 we	 should	 have	 more
resources	online	centralized	and	and	books	and	so	on	but	it	feels	like	very	early	days	so
i'm	hoping	we'll	have	more	of	that	soon	i'm	hoping	to	put	this	online	as	a	resource	and	i
would	 love	 to	 turn	 it	 into	 something	 like	 something	 resembling	 a	 book	 in	 the	 coming
months	and	years	but	we'll	see	um	but	yeah	there's	not	a	lot	out	there	just	for	us	vi	folks
um	and	 i	would	 i	 learned	a	 lot	of	 this	mainly	by	um	first	 i	 learned	python	with	a	book
called	learn	python	the	hard	way	this	is	a	long	time	ago	maybe	nine	or	ten	years	ago	or
maybe	even	more	and	then	a	few	years	ago	i	got	more	into	data	science	and	i	really	just
sat	with	a	lot	of	blogs	and	tutorials	and	stuff	and	there	i	didn't	find	that	there	were	that
many	books	that	i	found	super	helpful	um	for	the	data	science	specifically	so	it	was	kind
of	a	lot	of	just	trying	to	do	things	and	then	looking	up	how	to	do	them	um	sarah	maybe
you	have	a	more	encouraging	answer	no	i	mean	i	think	i	think	uh	this	is	very	much	like
the	 researcher	way	 to	 learn	 to	code	 like	 i	 took	one	coding	class	 in	undergrad	um	that
almost	fortunately	went	on	zoom	part	way	through	because	that	made	it	much	easier	for
you	to	follow	because	everything	was	online	instead	of	like	them	typing	on	a	screen	um
so	 it	was	almost	easier	 that	way	but	um	and	 then	and	 then	 it	was	 really	 just	 like	oh	 i
need	 to	do	 this	 thing	 for	 research	well	 i	 better	google	and	 figure	 it	 out	um	and	 that's
that's	more	or	less	how	i	learned	to	code	just	google	and	discover	um	which	is	not	super
helpful	here	 i	know	but	um	yeah	maybe	 if	we	do	put	together	a	resource	 list	as	 far	as
learning	sonification	there	are	some	things	i	can	recommend	um	first	of	all	for	more	like
outreachy	 talk	 um	 the	 astronomer	Wanda	 Diaz	 Merced	 um	 who's	 a	 blind	 astronomer
gave	 a	 Ted	 Talk	 um	about	 sonification	 i	 think	 if	 you	 google	 like	 blind	 astronomer	 like
that'll	 like	blind	astronomer	ted	talk	that'll	come	up	um	and	i	think	that	was	one	of	my
first	 introductions	to	sonification	 i've	also	 linked	on	the	curriculum	i	should	have	 linked
um	both	the	astronify	web	page	which	is	all	their	documentation	and	then	also	dr	scott
fleming	from	the	space	telescope	science	institute	he's	the	project	lead	on	astronify	his
talk	 about	 astronify	 at	 the	 space	 telescope	 science	 institute	 day	 of	 accessibility	 that's
another	great	thing	to	check	out	um	if	you	send	me	an	email	and	want	to	know	more	i'm
happy	to	dig	up	some	more	resources	for	you	and	then	if	you	really	want	to	dive	like	into
the	deep	end	of	sonification	there	is	a	sonification	world	chat	um	every	used	to	be	every



month	now	it's	maybe	every	couple	months	ish	um	that's	on	zoom	with	like	sonification
researchers	 from	all	over	 the	world	um	and	 i	 could	 if	you	 reach	out	 to	me	 i	 could	see
about	 getting	 you	 added	 to	 that	 uh	 to	 that	 group	 as	 well	 if	 you're	 really	 interested
though	 um	 that	 one	 tends	 to	 be	 a	 little	 bit	 more	 technical	 on	 the	 research	 side	 as
opposed	to	like	the	using	sonification	side	so	um	that's	my	little	spiel	there	and	with	that
tim	thank	you	tim	 if	 i'm	getting	your	name	correct	um	and	 let	me	 just	give	a	 little	 i'm
gonna	um	probably	end	the	recording	now	in	a	minute	but	i	just	want	to	give	people	kind
of	a	few	like	words	of	encouragement	i	think	for	here	um	and	basically	i	just	want	to	say
first	of	all	you	know	the	usual	that	we're	vi	folks	we're	blind	via	folks	it	this	is	definitely
an	area	where	you	know	the	tooling	could	be	you	know	that	you	know	we've	used	some
tools	here	that	are	definitely	usable	and	and	you	can	get	a	lot	done	and	i	would	say	you
can	do	most	things	but	it	takes	it	is	harder	we	it	takes	a	lot	of	us	more	time	to	learn	it
and	also	we	don't	have	access	to	some	of	the	same	approaches	that	our	side	of	side	of
colleagues	would	um	with	 that	said	 i	 think	 that	you	know	we're	having	a	 little	bit	of	a
moment	for	this	stuff	that	people	are	really	working	on	this	there	are	organizations	that
are	 becoming	more	 interested	 in	 it	 um	 that	 and	 i'd	 also	 say	 if	 you	 can	manage	 to	 to
develop	a	little	bit	of	your	python	skills	if	you	can	manage	to	develop	a	little	bit	of	your
data	science	skills	then	it	is	a	useful	moment	to	to	you	could	you	could	really	have	make
a	difference	 in	 terms	of	 the	 tools	 that	are	available	 to	people	 their	curriculum	and	the
resources	that	are	available	 to	people	um	or	even	 if	you	wind	up	teaching	using	other
using	some	of	the	resources	we've	created	and	so	on	then	then	that	could	really	make	a
difference	for	other	people	so	it's	you	know	it's	a	typical	area	but	it's	i	do	think	things	are
moving	i	think	it's	a	good	time	to	get	involved	i	also	think	it's	an	area	that	makes	sense
for	blind	 folks	there's	no	reason	we	can't	do	data	science	um	it's	a	very	 it's	 it's	a	very
non-visual	medium	um	when	you	actually	 get	 down	 to	 it	 and	when	you	actually	 learn
how	things	work	um	so	i'll	say	that	and	um	i'll	also	say	you	know	i'm	i'm	trying	i'm	i'm
trying	 to	 activate	 some	 folks	 who	 you	 know	maybe	 they	 have	 resources	maybe	 their
organizations	and	so	on	and	also	to	create	some	resources	so	i'll	be	creating	this	mailing
list	i	have	a	website	up	called	blind	coders.com	it	basically	has	nothing	on	it	but	we	will
you	know	put	this	on	it	i'm	going	to	put	this	up	there	if	i	can	or	at	least	link	it	if	pandas
wants	to	host	it	i'm	going	to	link	to	other	projects	that	i	know	about	um	if	people	if	the
mailing	 list	 is	 active	 if	 people	 get	 involved	 i	will	 try	 to	 build	 that	 out	 i'll	 try	 to	maybe
maybe	 we'll	 add	 forums	maybe	 we'll	 add	 other	 resources	maybe	 we'll	 add	 you	 know
whatever	maybe	we'll	try	to	host	other	people	to	to	write	some	curriculum	and	do	some
workshops	 like	 this	 um	 and	 um	 and	 i'll	 say	 you	 know	 stick	 with	 it	 like	 hopefully	 this
provides	you	some	basis	for	 learning	um	check	out	some	the	book	once	i	send	out	the
resources	 check	 out	 the	 other	 resources	 for	 learning	 um	and	 and	um	and	 you	 know	 i
think	that	you	you	know	you	you	can	really	actually	you	know	uh	it	may	be	discouraging
you	know	you	do	a	few	days	of	it	and	you're	like	this	is	really	hard	but	if	you	stick	with	it
for	 a	 year	 you	 stick	with	 it	 for	 two	 years	 people	 always	 overestimate	what	 they	 think
they	can	do	in	a	day	but	they	underestimate	what	they	can	do	in	a	year	in	a	year	if	you
stick	with	stuff	 like	 this	you	um	you	will	you'll	be	actually	be	a	programmer	you	know



what	i	mean	and	people	get	hired	and	so	on	after	doing	only	a	year	or	two	of	 learning
how	to	program	and	i've	already	seen	some	of	you	like	people	like	nickel	um	and	joy	you
know	they've	been	doing	contributions	they	did	nickel	did	his	first	github	contribute	open
source	contribution	on	github	that	i	saw	during	this	and	um	and	that's	very	encouraging
to	see	and	there's	a	lot	of	meetings	and	so	on	you	can	jump	on	um	there's	the	the	um
jupiter	 accessibility	meetings	 that	meet	month	 i	 think	monthly	 or	 something	 like	 that
there	are	the	sonification	world	chat	um	these	these	are	open	source	as	a	culture	where
you	 should	 just	 speak	 up	 jump	 in	 create	 issues	 create	 poll	 requests	 are	 basically
suggestions	for	how	things	should	be	and	and	also	open	meetings	so	and	you	you	you're
allowed	 to	 speak	 up	 you're	 allowed	 to	 participate	 um	 you	 know	 i	 think	 we're	 often
discouraged	 we're	 often	 encouraged	 to	 be	 in	 the	 shadows	 and	 be	 um	 you	 know	 not
speak	up	as	blind	folk	but	um	but	i	think	you	know	we	need	to	so	okay	so	thank	you	very
much	 i	 really	appreciate	you	all	making	 this	such	an	amazing	energetic	workshops	we
had	over	350	people	sign	up	for	these	workshops	we	had	some	of	the	workshops	they
had	 set	 you	 know	50	 70	 80	 people	 in	 them	 there's	 tons	 of	 people	 following	 on	 home
they're	 sending	 people	 are	 sending	 updates	 people	 are	 translating	 the	 curriculum	 i'm
feeling	a	lot	of	energy	with	this	and	i	hope	to	keep	it	up	i	hope	to	create	more	resources
for	you	all	so	thank	you	very	much


