
Principles	of	Sonification	(Nonvisual	Data	Science
Workshop	Series)
(0:03	-	1:38)

Hi	everyone,	my	name	is	Sarah	Kane.	I'm	a	PhD	student	in	astronomy	at	the	University	of
Cambridge	 and	 I	 am	 one	 of	 the	 co-instructors	 for	 this	 non-visual	 data	 science	 tutorial
series	alongside	Patrick	Smith	who	 is	a	blind	programmer	and	programming	 instructor
and	consultant	with	the	Iota	School.	This	is	the	fourth	of	the	five	tutorial	series.

Today	we'll	 begin	 talking	about	data	 sonification	and	 the	next	 tutorial,	 next	week,	will
also	cover	the	same	topic.	Again	these	tutorials	take	place	Tuesdays	from	6	to	8	p.m.	UK
time,	 that's	 my	 time	 zone,	 1	 to	 3	 p.m.	 Eastern	 Time	 in	 the	 US	 or	 whatever	 that
corresponds	to	 in	your	respective	time	zone.	These	tutorials	are	being	very	generously
supported	by	Pandas	and	Numfocus	which	makes	them	free	and	available	to	all	of	you
and	 all	 of	 the	 recording	 you're	watching	 right	 now	and	 all	 of	 the	written	 curricula	 are
online	and	available	to	you.

I	really	encourage	you	to	check	out	the	curriculum,	it's	got	all	of	the	code	we'll	go	over
as	 well	 as	 some	more	 details	 and	 you	 know	 written	 instructions	 for	 everything	 we're
doing	today	if	you	want	to	revisit	it	in	written	form	and	of	course	Patrick	and	I	are	always
happy	 to	 answer	 your	 questions	 over	 email.	 We	 also	 have	 office	 hours	 on	 Thursdays
from	6	to	8	p.m.	UK	time,	1	to	3	p.m.	Eastern	Time	in	the	US	and	so	on	and	so	forth	over
the	same	zoom	link	that	this	live	tutorial	occurs.	Now	those	of	you	who	are	watching	this
right	now	might	be	able	to	tell	that	this	is	not	a	live	zoom	course	happening.

(1:39	-	5:59)

We're	 currently,	 well	 I,	 this	 is	 not	 the	 Royal	 We,	 but	 I	 am	 currently	 re-recording	 this
tutorial.	We	had	some	unfortunate	sound	difficulties	during	the	live	zoom	so	we	wanted
to	 make	 sure	 there	 was	 a	 nice	 clean	 version	 with	 no	 sound	 difficulties	 available	 to
everyone	for	posterity	so	to	speak.	So	I'm	excited	to	go	over	this	curriculum	again	with
all	of	you	and	again	if	you	have	questions	please	feel	free	to	reach	out.

Now	without	 further	ado,	especially	because	 there's	no	one	else	here	with	me,	 I	 think
we're	just	going	to	jump	right	into	things.	So	as	you	have	before	I	encourage	you	now	to
open	 up	Anaconda	 prompt.	 I'm	 already	 on	 the	 screen,	 I'm	 going	 to	 turn	 on	my	NVDA
speech	again,	didn't	want	it	talking	over	me	during	the	intro.

Speech	mode	beeps,	speech	mode	talk.	Excellent	and	hopefully	you	can	hear	that	okay.
Okay	so	open	up	Anaconda	prompt	as	we	have	in	the	previous	three	tutorials.

If	you	are	not	already	there	 like	 I	am	you	can	do	that	by	hitting	 the	Windows	key	and
typing	in	Anaconda	prompt	to	open	it	up.	Again	this	is	Anaconda	prompt	not	Anaconda



navigator	and	what	I	want	you	to	do	right	now	is	not	to	start	IPython.	Again	please	do	not
start	 IPython	yet	which	 is	what	we	do	usually	after	opening	Anaconda	prompt	because
that's	the	sort	of	interactive	workspace	we	have	to	write	code	and	test	it.

But	 what	 we're	 actually	 about	 to	 do	 right	 now	 is	 to	 do	 something	 called	 installing	 a
package.	Now	we've	 used	 packages	 in	 the	 previous	 tutorials.	We've	 used	 pandas	 and
NumPy.

These	are	like	libraries	of	code	that	other	people	have	written	that	we	can	now	make	use
of	and	those	packages	because	they're	really	popular	and	widely	used	are	available	with
the	Anaconda	 installation	that	you	already	have.	But	some	less	common	packages	 like
Astronify	which	is	the	sonification	package	that	we're	going	to	use	today	is	not	already
pre-installed	with	Anaconda.	So	we're	gonna	have	to	install	it	ourselves.

No	worries	it's	a	pretty	simple.	It's	as	simple	as	one	line	of	code	actually.	But	before	we
get	into	that	I	want	to	just	go	over	a	few	caveats.

First	of	all	unfortunately	to	our	knowledge	we	really	only	expect	the	Astronify	installation
to	work	properly	on	Windows	computers	and	also	maybe	on	older	MacBooks.	If	you	have
a	MacBook	with	one	of	the	newer	Mac	chips	so	not	an	Intel	chip	but	a	Mac	chip	so	that's
the	M1,	M2,	M3	Mac	we	have	had	no	luck	getting	Astronify	to	work	on	those	new	Macs.
Likewise	if	you	are	a	Linux	person	using	Linux	unfortunately	we	also	have	not	had	luck
getting	Astronify	to	work	on	Linux.

This	alongside	our	desire	to	use	NVDA	as	the	screen	reader	we're	teaching	with	is	kind	of
one	 of	 the	motivations	 for	 us	 encouraging	 all	 of	 you	 to	 use	Windows	 for	 this	 tutorial
series.	Also	if	you	have	other	packages	already	installed	so	say	you	already	program	a
bunch	and	have	other	things	installed	on	your	Anaconda	it	is	possible	that	this	might	not
work.	It's	really	hard	to	predict	how	different	package	dependencies	might	not	get	along
with	each	other,	might	not	work	out	properly.

So	 if	 you	have	 some	sort	 of	 error	message	because	you	have	other	packages	already
installed	please	do	let	Patrick	and	I	know	either	in	office	hours	or	over	email	and	we	will
try	 to	help	you	out.	But	 for	 the	vast	majority	of	you	who	have	 installed	Anaconda	nice
and	fresh	for	this	course	this	should	be	quite	simple.	We	hope	anyway.

Cross	 your	 fingers.	 So	 installing	 Astronify	 and	 I've	 uninstalled	 it	 actually	 so	 that	 I	 can
install	 it	 with	 you	 now	 is	 as	 simple	 as	 one	 line	 that	 we're	 going	 to	 type	 again	 not	 in
IPython	just	in	the	Anaconda	prompt.	We	are	going	to	type	PIP.

PIP	is	our	package	manager	here.	It's	the	one	managing	all	these	libraries	of	code.	PIP	is
the	thing	that's	going	to	install	this	package	for	us.

There's	another	package	manager	out	there	called	Conda.	Some	things	are	available	via
Conda	others	via	PIP.	We	won't	get	into	that.



(5:59	-	8:54)

This	 one	we're	 going	 to	 use	 PIP	 and	 if	 you're	 curious	 check	 out	 the	 curriculum	 online
where	I	talk	about	it	a	little	bit	more.	So	it's	PIP	P-I-P	space	space	install	"I-N-S-T-A-L-L"
PIP	space	install	space	Astronify	"space	A-S-T-R-O-N	R-O-N-I-F-Y"	PIP	install	Astronify	A-S-
T-R-O-N-I-F-Y	and	hit	enter.	"Collecting	Astronify.

Using	 cached	 Astronify	 0.1	 pi	 3	 none	 any	 dot	 WHL.	 Requirement	 already	 satisfied.
Astropy	in	C.	Users."

Alright	so	I'm	going	to	stop	that	now	because	there's	a	lot	of	text	happening	there.	So	I
don't	want	you	to	hear	all	of	it	but	I	wanted	some	of	it	to	play	because	I	don't	want	you
to	feel	 like	alarmed	when	NVDA	starts	reading	out	 just	this	absolute	barrage	of	text.	 It
should	mostly	be	along	the	lines	of	like	requirement	already	satisfied	you	know	installing
XYZ.

If	 you	 start	 getting	 some	 angry	 sounding	messages	 like	 you	 know	 couldn't	 do	 this	 or
whatnot	that's	a	good	time	to	start	maybe	doing	some	googling	or	contacting	Patrick	and
I	 but	 hopefully	 it'll	 all	 be	nice	 things	 that	 are	 like	 requirement	 already	 satisfied	 and	 it
should	end	with	successfully	 installed	Astronify	and	 that	should	be	all	you	need	 to	do.
Occasionally	 I	 think	 I've	 seen	 some	 people	 get	 a	 message	 where	 it	 says	 proceed
question	mark	yes	why	slash	no	and	you	have	to	hit	type	Y	for	yes	and	then	hit	enter.	I
don't	think	most	of	you	should	get	that	but	if	you	do	not	worry.

And	with	that	congratulations	the	Astronify	package	is	installed	cool	done.	First	module
or	first	section	of	this	curriculum	or	this	tutorial	is	checked	off	the	list.	What	I'm	going	to
do	now	is	I'm	going	to	actually	step	away	from	the	terminal	step	away	from	some	code
and	give	you	a	little	bit	more	theory	about	what	sonification	is	and	how	it	works.

Now	 I've	 just	 mentioned	 sonification	 a	 bunch	 of	 times	 here	 without	 actually	 saying
anything	about	what	 it	 is	 so	we're	gonna	get	 into	 the	 theory	we're	gonna	get	 into	 the
examples	and	then	we'll	get	back	to	the	code	yeah.	On	that	note	I'm	going	to	turn	off	the
speech	 for	NVDA	so	 it	 doesn't	 decide	 it	wants	 to	 talk	over	me	or	 talk	over	any	of	 the
sonification	examples	which	we	did	have	a	little	bit	of	in	the	original	zoom	so	you	know
this	is	one	a	sound	issue	we	will	dodge.	Speech	mode	off.

(8:55	-	19:13)

All	right	and	with	that	we	will	get	into	what	is	this	sonification	thing.	So	in	the	simplest
terms	sonification	 is	 the	representation	of	data	via	sound.	This	 is	directly	analogous	to
data	visualization	where	data	is	represented	via	some	visual	medium.

These	are	your	line	charts	your	bar	charts	your	pie	charts	your	histograms	the	list	goes
on	there	are	a	ton	of	data	visualizations	out	there.	Importantly	the	data	does	not	literally
look	this	way	it	does	not	literally	look	like	a	line	graph	it	doesn't	look	like	a	bar	chart	this



is	how	we	choose	often	to	represent	it	through	some	visual	medium.	In	fact	there	are	a
lot	of	arbitrary	choices	involved	in	these	in	these	visualizations	for	instance	you	have	a
line	chart	how	are	you	going	to	scale	the	axes	how	large	will	you	make	the	points	these
are	all	various	different	choices	that	you	can	make	in	these	data	visualizations.

It	 is	 a	 representation	 of	 the	 data	 a	 way	 we	 choose	 often	 to	 picture	 the	 data	 and
oftentimes	 they're	 quite	 useful	 they	 let	 us	 understand	 trends	 and	 things	 like	 that	 but
there	 are	 issues	 with	 data	 visualizations	 and	 not	 the	 least	 of	 which	 which	 will	 be	 of
course	great	interest	to	me	and	you	is	that	they're	not	accessible	to	people	with	visual
impairments	like	me.	So	data	sonification	where	we	represent	the	data	as	sound	sort	of
corrects	or	steps	around	that	one	that	sort	of	problem.	Now	before	we	get	more	into	data
sonification	and	what	exactly	a	sonification	could	be	besides	the	sound	representation	of
data	I	want	to	break	down	some	common	misconceptions	about	sonification.

First	of	all	sonification	generally	doesn't	involve	words	so	it's	like	non-speech	audio	so	for
instance	me	standing	here	and	telling	you	about	data	for	instance	when	Patrick	told	you
about	 the	 Airbnb	 data	 set	 that	 is	 not	 a	 sonification	 it's	 just	 him	 telling	 you	 about	 the
about	 the	 data	 so	 it's	 not	 typically	 what	 we'd	 consider	 a	 sonification	 a	 sound
representation	of	the	data	it's	like	a	word	representation	of	the	data	something	along	the
lines	of	that	 I	don't	have	a	more	elegant	word	for	that	but	 it's	not	generally	what	we'd
consider	sonification.	Sonification	also	is	not	what	we	consider	like	natural	sounds	or	or
just	the	sounds	themselves.	What	do	I	mean	by	this?	Well	for	instance	imagine	you	have
someone	walking	and	you	are	listening	to	their	footsteps	to	understand	to	measure	how
quickly	they	are	walking.

In	this	case	the	sound	of	their	footsteps	is	not	a	sonification.	The	sound	of	their	footsteps
is	the	data	so	the	sound	is	not	a	representation	of	the	data	the	sound	in	that	case	is	the
data.	 Scott	 Fleming	 in	 his	 talk	 at	 the	 Space	 Telescope	 Science	 Institute's	 Day	 of
Accessibility	had	another	great	example	bird	songs	not	a	sonification	bird	songs	would
be	your	data	if	you	were	going	out	and	observing	bird	songs	same	sort	of	idea	here.

So	it	is	in	the	same	way	that	a	data	visualization	is	not	literally	like	what	the	data	looks
like	a	data	sonification	is	not	literally	what	the	data	sounds	like.	Alright	so	we've	broken
down	 roughly	 what	 sonification	 is	 it's	 a	 sound	 representation	 of	 the	 data	 and	 it's	 not
words	and	it's	not	sounds	from	nature.	Okay	we've	got	the	big	picture	here	the	only	way
to	concretize	 this	sort	of	 idea	of	what	sonification	 is	 is	going	 to	be	 to	get	 into	how	we
actually	sonify	things.

Today	we're	 going	 to	 go	 over	 two	 of	 the	most	 common	 sonification	 techniques	 this	 is
going	 to	be	modification	and	parameter	mapping	what	 they	are	what	 their	differences
are	and	we'll	also	talk	about	some	or	we'll	also	show	some	examples	of	each.	Alright	let's
begin	by	talking	about	modification.	You'll	often	hear	modification	described	as	the	most
direct	mapping	the	most	direct	representation	of	data	as	sound.



What	do	we	mean	by	this?	Well	suppose	we	have	two	variables	here	X	and	Y	and	in	this
case	Y	is	our	dependent	variable	which	means	that	as	X	changes	Y	changes	in	response.
Now	for	our	purposes	here	I'm	going	to	say	X	is	time	so	as	time	goes	on	Y	changes	with
time	and	so	if	Y	is	varying	with	time	going	up	and	down	as	time	goes	by	you	can	kind	of
imagine	Y	moving	like	in	a	regular	wave	not	like	a	smooth	wave	pattern	but	it's	going	up
and	down	so	Y	the	height	of	the	wave	is	changing	with	time.	Now	we	call	the	height	of	a
wave	the	amplitude	and	just	as	this	height	this	amplitude	of	Y	is	changing	with	time	we
can	imagine	the	amplitude	of	a	sound	wave	changing	with	time	at	the	same	sort	of	way.

So	basically	 if	Y	goes	up	the	amplitude	the	height	of	our	sound	wave	goes	up	and	 if	Y
goes	down	the	amplitude	or	height	of	our	sound	wave	goes	down.	So	we	are	mapping
the	height	of	Y	to	the	height	of	the	sound	wave.	This	is	what	we	mean	by	direct	mapping
we're	treating	Y	like	it's	a	wave	and	then	just	making	the	sound	wave	that	represents	Y
behave	in	the	exact	same	way	as	Y	in	terms	of	how	it	goes	up	and	down.

Now	 our	 ears	 perceive	 amplitude	 the	 height	 of	 the	 sound	wave	 and	 again	 sound	 is	 a
wave	in	the	air	so	our	ears	perceive	the	amplitude	of	a	sound	wave	as	the	volume	it	has
to	do	with	 like	 this	air	pressure	essentially	 you'll	 hear	 it	 as	 changes	 in	volume	and	 so
essentially	what	is	happening	is	by	going	up	and	down	Y	is	controlling	the	value	ofhsorry
the	volume	of	the	sound	wave	we	hear	representing	the	data.	Alright	so	we've	covered
how	the	volume	is	controlled	by	Y.	What	about	pitch	that's	another	really	important	part
of	 sound	how	high	or	 low	of	note	 is.	Well	 this	 comes	down	 to	 something	we	call	 data
sampling.

We	don't	measure	data	continuously	rather	we	have	some	sampling	rate	which	is	often
how	we	measure	the	data.	So	for	instance	I'm	going	to	play	you	some	sounds	from	the
accessible	oceans	project	some	modification	from	the	accessible	oceans	project	and	the
times	 are	 measured	 each	 hour	 this	 is	 our	 data	 sampling	 rate	 so	 we	 have	 like	 24
measurements	in	a	day	one	measurement	each	hour.	Likewise	we	don't	play	the	sound
continuously	but	rather	we	play	it	at	some	data	sampling	rate	where	we	play	each	note
at	an	individual	moment.

So	we	have	our	data	measurement	rate	or	a	data	sampling	rate	and	we	have	an	audio
sampling	rate	where	we	play	 the	rate	at	which	we	play	 the	sounds.	Now	the	sampling
rate	 or	 the	 frequency	 at	which	we	measure	 and	 then	 play	 the	modification	 of	 data	 is
analogous	to	sound	frequency	which	our	ears	perceive	as	pitch.	Thus	the	 frequency	of
the	sound	playback	influences	the	pitch	at	which	we	hear	the	modification.

Often	 we	 cannot	 play	 the	 modification	 of	 the	 data	 with	 the	 same	 frequency	 as	 the
original	data	sampling	rate	because	the	then	the	frequency	or	the	pitch	we'd	be	playing
would	 just	 be	 outside	 the	 audible	 hearing	 range	 for	 humans.	 Thus	 in	 audification	 we
often	 have	 to	 do	 something	 that	 I've	 seen	 called	 translating	 or	 shifting	 the	 sound
representation	of	the	data	how	the	sampling	rate	at	which	we	play	notes	just	so	that	the



pitch	is	in	the	audible	pitch	range.	Now	what	I'm	going	to	do	is	I'm	going	to	play	you	a
sonification	 of	 the	 tides	 from	 the	 accessible	 oceans	 project	 at	 two	 different	 sampling
rates.

It	might	be	a	little	bit	difficult	to	hear	over	the	recording	like	from	my	computer	to	your
computer	 but	 there	 are	 two	 different	 sampling	 rates	 and	 you	 can	 hear	 that	 there's	 a
pitch	 difference	 between	 the	 two.	 If	 you	 can't	 hear	 it	 through	 the	 recording	 I	 do
encourage	 you	 to	 go	 from	 the	 tutorial	 curriculum	page	 to	 the	 accessible	 oceans	 page
which	is	linked	there	and	has	the	examples	on	it.	So	if	you	can't	hear	the	pitch	difference
here	definitely	encourage	you	to	go	check	that	out.

I'm	going	to	go	play	that	now	so	it'll	be	two	sonifications.	All	right	that	was	pretty	quick
so	 I'm	 going	 to	 play	 that	 one	more	 time.	 All	 right	 hopefully	 you	 could	 hear	 the	 noise
happening	there.

That	 is	 the	 tide	cycle	you're	hearing.	So	 tides	go	 in	and	out	you	know	every	24	hours
that's	at	least	as	much	as	I	know	about	oceanography	tells	you	what	I	know	and	so	what
you're	 hearing	 is	 that	 actually	 every	 24	 samples	 not	 that	 we	 can	 hear	 the	 individual
nodes	because	they're	so	close	together	you	hear	that	as	the	tides	going	up	and	down
control	 the	volume	of	 the	modification	going	up	and	down	that	each	of	 those	cycles	 is
that	24	hour	cycle	of	the	tides	going	up	and	down.	Now	I'm	going	to	play	this	one	more
time	the	same	modification	before	I	play	the	next	one	that's	at	a	different	sampling	rate
so	you	can	hopefully	hear	the	two	pitches	side-by-side.

(19:22	-	1:50:38)

All	right	hopefully	you	can	hear	that	on	my	end	I	can	definitely	hear	the	pitch	difference
I'm	hoping	 it	 comes	 through	on	 the	 recording	 fingers	crossed	so	what	you	might	have
been	 able	 to	 tell	 on	 those	 two	 is	 first	 that	whoop	whoop	whoop	 is	 still	 there	 because
we're	still	measuring	that	same	tide	or	we're	still	representing	that	same	tide	data	of	it
going	up	and	down	the	pitch	is	lower	on	the	second	round	of	data	and	also	it's	a	little	bit
slower	 it's	 a	 little	 bit	 slower	 between	 each	whoop	whoop	whoop	 and	 the	modification
lasts	a	little	bit	longer	because	the	data	sampling	the	frequency	at	which	we	play	those
notes	is	 is	a	little	bit	slower	which	lowers	that	pitch	and	also	lengthens	the	time	of	the
modification.	 So	 again	 hopefully	 you	 could	 hear	 that	 difference	 and	 if	 you	 couldn't
definitely	recommend	checking	it	out	on	your	own	computer.	All	right	so	if	modification
is	so	straightforward	we're	 treating	the	data	 like	a	wave	and	then	actually	one	second
before	 I	 keep	 going	 I	 think	 the	 computer	 is	 about	 to	 die	 rather	 than	 suffer	 another
technical	difficulty	which	should	make	me	quite	sad	 I'm	 just	going	to	plug	this	 in	sorry
folks.

All	right	we're	back	at	business.	Okay	so	if	modification	is	so	straightforward	where	we're
really	just	treating	the	data	like	a	wave	and	then	representing	it	as	an	analogous	sound
wave	why	don't	we	do	it	for	everything?	Well	there	are	a	lot	of	reasons.	First	it's	pretty



limited	and	what	we	can	or	cannot	sonify.

For	instance	how	would	you	audify	make	an	audification	or	a	sonic	representation	using
audification	of	an	image	of	some	2d	data	you	know	with	an	X	and	a	Y	colors	there	are
too	many	different	parameters	going	on	there	to	put	into	this	amplitude	so	this	volume
and	then	the	time.	So	it's	really	better	suited	for	a	very	specific	type	of	data	a	simpler
type	 of	 data.	 Also	 there	might	 be	 other	 reasons	we	don't	want	 to	 use	 audification	 for
instance	maybe	there's	a	more	like	aesthetically	pleasing	a	nicer	sound	that	we	can	use
rather	than	these	amplitude	changes	in	the	sound	wave.

An	aesthetic	difference	is	a	really	valid	reason	to	have	a	different	representation	of	the
data.	 I	mean	 I	can	say	that	 I	know	a	 lot	of	scientists	 that	spend	a	 lot	of	 time	trying	to
make	their	data	visualizations	look	nice	look	pretty	so	that	matters	as	a	choice	too	and
it's	a	totally	valid	choice	to	make.	Again	we're	not	literally	showing	what	the	data	sounds
like	we're	making	choices	of	how	to	represent	it	and	depending	on	our	audience	and	our
goals	we	might	make	different	choices.

So	let's	get	into	what	one	of	those	different	choices	might	be	and	that	might	be	to	use	a
very	 popular	 and	 very	 flexible	 sonification	 technique	 called	 parameter	 mapping.
Parameter	 mapping	 is	 a	 more	 flexible	 as	 I	 mentioned	 form	 of	 sonification	 that	 has
become	popular	 in	 the	 recent	years	and	 in	parameter	mapping	 in	essence	we	map	or
connect	different	aspects	or	dimensions	of	the	data	to	different	parameters	of	the	sound
representation	 such	 as	 pitch	 or	 volume	 and	 rhythm.	 Like	 modification	 we	 could	 use
parameter	 mapping	 to	 sonify	 data	 consisting	 of	 say	 one	 independent	 variable	 that's
what	I	called	Y	and	one	dependent	variable	that's	what	was	time	for	us	here	but	one	of
the	strengths	of	parameter	mapping	 is	 that	we	can	actually	map	much	 represent	with
sound	much	more	complex	data	than	we	can	with	modification	because	there	are	many
more	 aspects	 parameters	 to	 the	 sound	 that	 we	 can	 use	 that's	 pitch	 and	 rhythm	 and
volume	different	instruments	and	timber	I'm	not	a	musician	but	the	list	goes	on	there	are
a	 lot	 of	 different	 knobs	 we	 can	 turn	 in	 our	 sound	 to	 represent	 different	 dimensions
different	aspects	of	our	data.

All	 right	 let's	clarify	 the	concept	of	parameter	mapping	using	an	example	suppose	you
have	 measurements	 of	 number	 of	 sales	 of	 something	 I'm	 gonna	 go	 with	 ice	 cream
because	I	 like	 ice	cream	I	can	totally	go	for	some	right	now	and	net	profits	 from	those
sales	of	 ice	cream	over	a	period	of	50	years	we	choose	to	map	the	number	of	sales	to
pitch	such	that	more	sales	are	represented	by	higher	pitches	and	to	map	net	profits	to
volume	 such	 that	more	 profits	 are	 represented	 by	 a	 louder	 note	 so	 essentially	we	 let
pitch	be	mapped	 to	sales	and	volume	be	mapped	 to	profits	 from	those	sales	and	now
we're	letting	time	that	independent	variable	what	we'd	have	along	you	know	the	x-axis	if
this	were	a	visualization	for	any	visualization	folks	we	let	time	represent	be	represented
by	 time	 in	 the	 sonification	 such	 that	 each	note	 is	 a	measurement	 in	 time	 so	 that	 you
know	if	you're	listening	later	in	the	sonification	you	know	you're	hearing	later	in	time	so



the	first	note	represents	50	years	ago	and	the	last	note	of	the	sonification	represents	the
data	measured	 now	 suppose	 as	we	 listen	 to	 the	 sonification	 that	we	 hear	 a	 period	 in
which	 the	 pitch	 of	 notes	 drops	 so	 the	 pitch	 goes	 down	we	 can	 tell	 from	 the	mapping
decisions	that	we	made	that	this	means	the	number	of	ice	cream	sales	in	this	period	has
dropped	relative	to	the	other	measurements	perhaps	it's	wintertime	or	a	recession	and
people	aren't	buying	as	much	ice	cream	now	suppose	that	over	the	course	of	the	entire
data	sonification	we	hear	the	volume	of	notes	generally	increase	but	the	pitch	remains
relatively	 constant	 this	means	 that	 profits	 have	 gone	 up	 but	 the	 number	 of	 sales	 has
gone	has	remained	relatively	constant	so	the	cost	per	 ice	cream	sale	the	profit	per	 ice
cream	 sale	 must	 have	 gone	 up	 that's	 what	 I'd	 call	 inflation	 finally	 suppose	 that	 the
amount	of	time	between	notes	decreases	towards	the	end	of	the	sonification	this	might
mean	 that	 the	 data	were	 collected	more	 frequently	 in	 later	 times	 so	 that	 there's	 less
time	between	each	data	point	 note	here	 that	 there	 is	 no	 one	 correct	way	 to	map	our
data	to	different	parameters	we	could	 just	as	easily	have	mapped	sales	to	volume	and
profits	to	pitch	thus	we	make	choices	generally	through	testing	and	experimentation	to
see	which	representations	of	our	data	most	effectively	and	most	accurately	capture	the
importance	 of	 information	 and	 communicate	 of	 the	 information	 and	 communicate	 it
preferably	 in	 a	 way	 that's	 both	 understandable	 comprehensible	 and	 aesthetically
pleasing	 this	 is	 truly	 just	 no	 different	 from	a	 data	 visualization	where	 graphics	will	 go
through	many	 iterations	 of	 designs	 to	 clearly	 represent	 the	 data	 data	 representations
whether	sonic	or	visual	always	represent	choice	so	one	of	the	things	 I	hear	most	often
about	sonifications	is	that	they're	arbitrary	is	that	you	know	this	isn't	you	know	there	are
so	 many	 different	 ways	 you	 could	 represent	 the	 same	 data	 how	 do	 you	 ever	 know
anything	because	that	you	could	just	represent	the	data	so	many	different	ways	but	this
is	just	how	representations	of	data	in	general	go	it	involves	choice	it's	kind	of	a	fun	thing
all	 right	 let's	 actually	 listen	 to	 a	 sonification	or	 to	 a	parameter	mapping	example	now
because	my	background	is	in	astronomy	we're	going	to	listen	to	an	astronomy	example
this	 is	 from	the	NASA	and	Chandra	X-ray	Center's	universe	of	sound	website	and	what
we're	 going	 to	 do	 is	we're	 going	 to	 listen	 to	 the	 sonification	 but	 it	 also	 comes	with	 a
description	which	tells	us	how	the	break	down	the	parameter	mapping	so	what	aspect	of
the	 data	was	mapped	 to	which	 a	 parameter	 of	 the	 sound	 and	 then	we'll	 listen	 to	 the
sonification	all	right	it's	so	we're	going	to	listen	to	a	sonification	of	the	galactic	center	or
of	 data	 from	 the	 galactic	 center	 this	 was	 taken	 from	 the	 Chandra	 X-ray	 telescope	 I
believe	explore	the	center	of	our	very	own	Milky	Way	galaxy	the	translation	begins	on
the	 left	 side	 of	 the	 image	 and	 moves	 to	 the	 right	 with	 the	 sounds	 representing	 the
position	 and	 brightness	 of	 the	 sources	 all	 right	 we've	 already	 got	 our	 first	 parameter
mapping	the	translation	begins	on	the	left	side	of	the	image	and	moves	to	the	right	they
don't	say	this	directly	but	what	this	means	is	that	time	within	the	sonification	is	mapped
to	 how	 far	we	 are	moving	 from	 left	 to	 right	 in	 the	 image	 so	 you	 know	 if	 you	 hear	 in
something	earlier	in	the	sonification	it's	closer	to	the	left	you	hear	something	right	at	the
end	of	the	sonification	later	in	time	you	know	it's	representing	something	on	the	right	of
the	image	the	light	of	objects	located	towards	the	top	of	the	image	are	heard	as	higher



pitches	 while	 the	 intensity	 of	 the	 light	 controls	 the	 volume	 all	 right	 that's	 two	 more
parameter	mappings	 there	 so	 pitch	 is	 controlled	 by	 how	 far	we	 are	 up	 and	 down	 the
image	with	higher	pitches	representing	objects	higher	up	 in	the	 image	so	closer	to	the
top	where	lower	notes	are	going	to	represent	objects	lower	down	in	the	image	we	also
have	a	second	parameter	mapping	in	the	sentence	the	intensity	of	the	light	controls	the
volume	what	this	means	 is	that	brighter	objects	are	going	to	be	represented	by	 louder
noises	 and	dimmer	objects	 in	 the	 image	are	going	 to	be	 represented	by	 softer	 noises
stars	and	compact	 sources	are	converted	 to	 individual	notes	while	extended	clouds	of
gas	and	dust	produce	an	evolving	drone	what	does	 this	mean	well	smaller	objects	are
going	to	be	little	notes	 larger	objects	 longer	sounds	so	the	size	of	the	object	has	to	do
with	the	duration	of	the	note	the	crescendo	happens	when	we	reach	the	bright	region	to
the	 lower	right	of	 the	 image	this	 is	where	the	4	million	solar	mass	supermassive	black
hole	at	the	center	of	our	galaxy	known	as	Sagittarius	a	star	resides	and	where	the	clouds
of	gas	and	dust	are	the	brightest	all	 right	 I'm	gonna	hit	play	hopefully	right	 I	 love	that
sonification	 that's	 one	 of	 my	 favorites	 the	 universe	 of	 sound	 project	 has	 lots	 of
sonification	 so	 I	 definitely	 recommend	 checking	 it	 out	 you	 can	get	 a	 super	 long	 crash
course	into	parameter	mapping	I	think	they're	lovely	really	lovely	to	listen	to	I'm	biased
because	I	like	space	but	there	you	have	it	I	don't	know	about	you	but	I	think	for	me	the
easiest	 thing	 to	 pick	 out	 is	 that	 note	 duration	 thing	 I	 could	 definitely	 hear	 those	 little
chimes	that	are	representing	stars	and	then	the	longer	notes	especially	towards	the	end
where	they	told	us	that	supermassive	black	hole	is	I	can	hear	that	sort	of	longer	stretch
of	notes	 really	 lovely	 I	 recommend	 if	you	want	 to	go	and	 listen	 to	 that	maybe	several
more	 times	 see	 if	 you	 can	 hear	 those	 individual	 parameter	 mappings	 the	 pitch
representing	how	high	we	are	along	the	image	up	or	down	the	volume	representing	how
bright	something	is	I	definitely	recommend	that	I	think	it	also	probably	would	be	easier
to	 hear	 over	 your	 own	 computer	 again	 rather	 than	 through	 this	 recording	 I'm	 hoping
fingers	 crossed	 that	 the	 sound	 records	much	better	here	 than	 it	did	 for	everyone	else
sorry	if	you	hear	some	background	noise	my	guide	dog	is	standing	up	and	shaking	but
I'm	hoping	it	records	much	better	than	it	did	during	the	original	zoom	all	right	so	that	is
modification	 and	 parameter	 mapping	 the	 two	 I	 would	 say	 most	 common	 sonification
techniques	 you	 will	 encounter	 that's	 also	 a	 really	 quick	 crash	 course	 into	 what
sonification	is	just	keep	in	mind	again	sonification	is	a	sound	representation	of	the	data
now	if	you're	sitting	here	and	thinking	Sarah	it's	super	pretty	I	think	it's	cool	but	how	in
the	 world	 do	 you	 ever	 learn	 to	 interpret	 that	 very	 understandable	 and	 especially	 it's
understandable	 given	 that	 we	 think	 of	 data	 visualizations	 graphs	 and	 charts	 and	 line
graphs	and	so	on	and	so	forth	as	intuitive	and	easy	to	interpret	but	that	is	not	at	all	true
children	in	schools	spend	years	learning	to	read	graphs	in	the	US	where	I'm	from	there's
a	standardized	test	for	college	like	to	get	into	university	called	on	the	ACT	and	a	whole
section	 of	 the	 thing	 is	 basically	 reading	 graphs	 and	 kids	 study	 for	months	 for	 that	 so
clearly	we	need	to	learn	to	read	and	interpret	data	visualizations	and	there	are	studies
suggesting	the	same	should	be	expected	to	be	true	of	data	sonifications	that	we	should
expect	to	need	to	learn	how	to	understand	and	interpret	them	this	kind	of	makes	sense



no	one's	born	learning	to	read	a	data	visualization	no	one's	born	learning	to	understand
like	already	knowing	how	to	understand	a	data	sonification	so	our	goal	for	the	rest	of	this
tutorial	recording	is	going	to	be	to	get	some	basic	shapes	in	Python	and	then	to	sonify
those	different	shapes	with	that	astronify	package	that	we	 just	 installed	 in	such	a	way
that	we	can	sonify	 those	different	 shapes	and	understand	how	 they	sound	so	you	can
hear	this	is	how	a	straight	line	sounds	different	from	a	curve	which	sounds	different	from
something	that's	moving	in	sort	of	a	wave	like	shape	the	goal	here	is	to	develop	some
intuition	for	you	so	things	sort	of	make	sense	a	little	bit	more	on	a	natural	level	so	that
next	week	when	we	get	into	sonifying	some	more	realistic	data	something	that's	not	just
shapes	and	lines	you'll	have	this	intuition	or	at	least	the	beginning	of	an	intuition	already
built	so	that's	 the	goal	 for	 the	rest	of	 today	so	now	we're	going	to	return	to	Anaconda
prompt	 or	 maybe	 you're	 already	 sitting	 there	 and	 I'm	 going	 to	 turn	 NVDA	 back	 on
"speech	mode	beeps	 speech	mode	 talk"	 and	now	we	 can	 start	 IPython.	 So	 just	 as	we
have	before	 I'm	going	 to	start	 IPython	by	 typing	 I	P	Y	T	H	O	N	 IPython	no	spaces	and
hitting	enter.	"Python	3.1	1.5	packaged	by	Anaconda	Incorporated	Main	September."

Alright	I'm	not	gonna	let	it	play	that	whole	thing	through	because	I	think	you've	heard	it
before	 but	 essentially	 you'll	 know	 you're	 an	 IPython	 because	 it'll	 tell	 you	 your	 Python
version	and	eventually	you'll	get	to	it	if	you	let	it	finish	it'll	tell	you	we're	in	in	one	we're
in	the	first	input	line.	Now	we're	going	to	start	by	making	some	of	what	I'm	going	to	now
refer	 to	 as	 synthetic	 or	 simulated	 data	what	 this	 basically	means	 is	 not	 like	 real	 data
from	 like	observations	or	measurements	 this	 is	basically	 like	 fake	data	we've	made	 to
follow	 various	 shapes	 or	 if	 you're	 math	 savvy	 and	 remember	 like	 your	 high	 school
algebra	classes	we're	actually	going	to	just	be	making	some	simple	algebraic	equations
here	we're	not	actually	going	to	go	through	making	all	of	them	we're	going	to	go	through
making	several	of	them	so	you	get	the	idea	of	 like	how	this	math	is	going	to	work	and
then	there's	a	CSV	file	that	has	everything	already	made	that	you	can	load	in	from	the
URL	I	encourage	you	to	go	to	the	curriculum	it's	under	data	preparation	under	the	final
subheading	called	 just	 in	case	quote	onquote	basically	 it	gives	you	 the	CSV	 file	 in	 the
URL	and	just	gives	you	the	code	to	paste	 it	 in	yes	so	I	encourage	you	to	do	that	but	 if
you're	 interested	 for	 how	 exactly	 all	 of	 that	 synthetic	 so	 again	 all	 of	 that	 not	 real
measured	 data	 was	 made	 in	 the	 CSV	 file	 the	 curriculum	 goes	 into	 painstaking	 detail
about	how	every	column	was	made	and	exactly	the	equations	that's	going	into	it	so	we'll
kind	of	do	a	brief	intro	to	that	just	so	you	have	a	rough	idea	of	how	this	CSV	was	made
but	if	you	want	all	the	nitty-gritty	details	the	curriculum	has	everything	all	right	so	those
of	you	who	remember	algebra	classes	will	remember	that	like	functions	equations	have
two	 different	 variables	 what	 I've	 called	 independent	 or	 X	 and	 dependent	 Y	 so	 Y	 is	 a
function	of	X.	Y	is	going	to	change	when	X	changes	so	what	I	want	to	do	first	is	I	want	to
make	an	array	of	numbers	that's	going	to	be	our	X	values	so	imagine	these	all	of	these
values	so	I	want	for	in	our	case	I	want	100	values	evenly	spaced	from	0	to	10	so	that	at
each	value	of	X	going	from	0	to	0.1	0.2	0.3	whatever	the	the	even	spacing	will	be	will
have	 Y	 change	 a	 different	 value	 of	 Y	 at	 each	 of	 those	 values	 and	 that	 Y	 will	 change



differently	depending	on	what	 function	we	do	now	as	was	evidenced	by	the	 fact	 that	 I
had	to	already	sit	and	think	about	like	the	first	three	numbers	in	those	numbers	ranging
from	0	to	10	I	really	don't	actually	want	to	sit	here	and	write	out	a	list	or	an	array	of	a
hundred	numbers	evenly	spaced	from	0	to	10	I	hope	you	don't	want	to	do	that	either	I
think	we	can	all	agree	that	that	sounds	really	quite	painful	so	the	good	news	is	NumPy
has	a	built-in	 function	 that	will	 do	 this	 for	us	 so	 let's	get	 started	 I'm	going	 to	 start	by
importing	 our	 favorite	 packages	 here	 so	 I'm	 going	 to	 do	 import	 NumPy	 import	 space
NumPy	and	"N-U-M-P-Y	as	NP"	it's	suggesting	the	way	I	always	type	NumPy	but	we're	not
going	to	do	that	at	the	moment	 into	all	right	and	you	can	hear	 I	hit	enter	and	now	it's
saying	you're	on	the	second	line	I'm	gonna	do	import	pandas	"import	NumPy"	it	wants	to
repeat	import	NumPy	we're	not	going	to	do	that	but	we're	not	gonna	need	pandas	at	the
moment	but	we	will	need	it	very	shortly	so	let's	just	get	it	in	here	"I-M-P-O-R-T	space	P-A-
N-D-A-S"	import	pandas	in	three	whoo	good	news	all	set	and	ready	to	go	so	what	I've	just
done	 is	brought	the	NumPy	and	pandas	packages	 into	this	coding	session	all	 right	and
next	what	we're	going	to	do	is	we're	going	to	use	something	called	the	linspace	function
the	linspace	function	is	a	built-in	function	in	NumPy	that	will	basically	give	us	an	evenly
spaced	array	of	numbers	starting	at	a	specified	start	number	and	ending	at	a	specified
stop	number	I	think	this	will	be	easiest	to	conceptualize	if	we	actually	do	an	example	so
let's	start	by	doing	NumPy	so	"N-U-M-P-Y"	so	from	NumPy	so	NumPy	dot	dot	NumPy	dot
linspace	 that's	 L-I-N-S-P-A-C-E	 so	 basically	 from	 the	 NumPy	 package	 pull	 the	 linspace
function	open	parenthesis	I'm	gonna	do	0	comma	5	comma	5	close	parenthesis.	That's
NumPy	dot	 linspace	open	parenthesis	0	comma	5	comma	5	that	 first	0	that's	our	start
value	for	the	array	the	second	number	the	5	is	the	stop	value	for	our	array	and	then	that
third	number	5	 is	 the	number	of	values	 I	want	so	basically	what	 I'm	saying	 is	 linspace
give	me	an	array	of	numbers	from	0	to	5	evenly	spaced	and	I	want	5	of	them	and	when	I
hit	enter	 it's	going	 to	 return	 to	me	an	array	of	 those	numbers	 "out	3	array	0	1.25	2.5
3.75	5"	yep	there	we	go	and	 it	has	spit	out	an	array	that	goes	from	0	to	5	5	numbers
evenly	 spaced	 let's	 try	 this	 again	we	 can	 change	 the	 parameters	 let's	 try	 NumPy	 dot
linspace	"N-U-M-P-Y"	dot	linspace	dot	"L-I-N-S-P-A-C-E"	"open	parenthesis	"left	paren"	I'm
gonna	go	0	comma	10	comma	5	what	is	this	saying	it's	saying	our	start	our	start	value	is
0	our	stop	value	is	10	and	I	want	5	numbers	so	NumPy	dot	linspace	open	parenthesis	0
comma	10	comma	5	close	parenthesis	give	me	5	numbers	evenly	spaced	from	0	to	10
"out	4	array	0	2.5	5	7.5	10"	and	now	you	can	hear	we	get	an	array	of	numbers	going	all
the	way	up	to	10	this	time	now	this	is	almost	what	I	said	I	wanted	I	wanted	an	array	of
numbers	from	0	to	10	but	 I	wanted	a	hundred	of	them	so	this	time	we're	 just	going	to
increase	 that	 third	 value	 from	5	 to	a	hundred	 so	 instead	give	me	a	hundred	numbers
evenly	spaced	from	0	to	10	and	also	I	don't	want	the	computer	to	just	spit	it	out	at	us	I
actually	want	to	save	it	so	just	as	Patrick	taught	us	to	save	variables	this	time	instead	of
just	doing	NumPy	dot	linspace	I'm	going	to	do	X	equals	NumPy	dot	linspace	because	I'm
gonna	say	hey	make	this	array	of	numbers	 from	0	 to	10	100	of	 them	and	call	 it	X.	 "X
space	equals	space	n	u	m	p	y	dot	l	i	n	s	p	a	c	e	left	paren	0	comma	0	comma	1	0	0	right
paren"	X	equals	NumPy	dot	 linspace	open	parenthesis	0	 comma	10	 comma	100	close



parenthesis	 in	6	and	 there's	no	output	 this	 time	because	we've	 just	 saved	X	but	 if	we
type	X	and	hit	enter	X	"X	equals	NumPy	dot"	it	wants	to	suggest	that	I	repeat	that	same
line	 from	before	 I	don't	want	 to	 repeat	 the	same	 line	 I	 just	want	 to	hit	X	and	hit	enter
"out	6	array	0	0.1	0	1	0	1	0	1	0.2	0	2	0	2	0	2	0.3	0"	all	 right	 I'm	not	gonna	 let	 it	go
through	 the	 whole	 thing	 but	 as	 you	 can	 hear	 it's	 spitting	 out	 a	 rather	 long	 array	 of
numbers	 that	 are	 relatively	 close	 together	 and	 it'll	 keep	 going	 all	 the	way	 up	 to	 10	 a
hundred	of	them	we	don't	want	to	listen	to	all	of	that	or	at	least	I	don't	you're	welcome
to	 listen	 in	your	own	time	 if	you	really	want	 to	hear	all	hundred	of	 those	numbers	but
now	we	have	checked	that	indeed	it's	saved	as	X	we	have	an	array	of	numbers	evenly
spaced	from	0	to	10	and	a	hundred	of	them	so	rather	small	spaces	now	I'm	going	to	do
something	I'm	going	to	make	one	of	these	equations	as	an	example	so	that	you	can	see
how	roughly	I've	made	these	sort	of	simple	shapes	we	have	going	and	then	we'll	load	the
CSV	so	that	we	just	have	all	of	the	data	so	what	I'm	going	to	do	right	now	is	I'm	going	to
make	 something	 called	 a	 sine	 function	 a	 sine	 of	 X	 so	 what	 I	 mean	 by	 this	 is	 a	 sine
function	is	a	trig	function	a	trigonometric	function	basically	it's	a	wave	so	as	X	increases
Y	 responds	 to	X	by	moving	up	and	down	 in	an	even	wave	pattern	 it	 just	goes	up	and
down	at	regular	intervals	as	X	goes	up	so	essentially	what	we	are	doing	right	now	is	we
are	making	a	wave	shape	and	I	just	want	to	call	this	Y	because	this	is	how	we	often	do
this	 in	math	 classes	 so	 I'm	 going	 to	 actually	 I'm	 going	 to	 call	 it	 Y	 underscore	 sine	 to
specify	 that	 we	 are	making	 a	 like	 a	 sine	 function	 it's	 always	 good	 to	 like	 name	 your
variables	in	such	a	way	that	you	know	what	they	mean	because	here	why	if	I	just	call	Y	it
could	be	like	any	function	if	I	call	Y	underscore	sine	we	know	it's	a	sine	like	a	sine	wave
so	we	are	making	a	wave	right	now	one	Y	any	line	so	Y	underscore	S	I	N	E	that's	how	we
spell	 sine	 for	 for	you	know	 in	math	 it's	not	 like	a	sign	 like	a	street	sign	yes.	 so	y_sine
"space	equals	space"	um	and	fortunately	NumPy	so	sine	is	like	non	easy	math	thing	to
do	 like	 a	 multiplication	 it's	 something	 you	 generally	 want	 a	 calculator	 for	 fortunately
NumPy	has	a	built-in	sine	function	so	all	we	have	to	do	is	do	NumPy	dot	it's	actually	sin
so	it's	not	a	full	sign	it's	NumPy	dot	s	i	n	and	that's	NumPy's	sine	function	and	you	...	that
was	a	typo	it	should	be	NumPy	dot	sign	not	NumPy	parenthesis	dot	s	i	n	left	for	n	right
now	 we	 want	 that	 left	 for	 n	 so	 Y	 underscore	 s	 i	 n	 e	 equals	 NumPy	 dot	 s	 i	 n	 open
parenthesis	2	times	X	that's	going	to	be	"2	star	X	right	paren"	so	we	are	saying	that	Y
sine	is	equal	to	the	sine	of	2	times	X	again	this	is	a	really	powerful	thing	about	NumPy
arrays	that	you	can	do	math	with	them	like	this	you	can	multiply	them	you	can	take	the
sine	of	them	all	sorts	of	things	like	this	and	we	can	hit	enter	and	if	we	print	out	Y	sine
now	 so	 if	 I	 just	 type	 Y	 underscore	 sine	 "Y	 line	 s	 i	 n	 e	 and	 hit	 enter	 out	 a	 array	 0
0.20064886	0.39313661	0.56963411	0.72296256	0.84688556	0.93636273	0.98775469
0.99897117	0.969555"	sorry	to	play	so	many	of	those	numbers	for	you	but	I	wanted	you
to	hear	 that	 it	goes	up	and	 then	back	down	 if	 I	 let	 it	play	even	 longer	we	would	have
heard	it	go	all	the	way	down	below	zero	and	then	back	up	again	which	I	encourage	you
to	 do	 because	 it'll	 give	 you	 an	 intuition	 for	 what's	 going	 on	 with	 this	 function	 but
essentially	what	I	want	you	to	understand	is	that	a	sine	of	X	is	a	wave	so	it's	going	to	go
up	 and	 then	 down	 and	 then	 up	 again	 and	 then	 down	 again	 all	 right	 cool	 let's	 make



maybe	one	more	really	quite	simple	equation	here	I	in	fact	it's	going	to	be	the	simplest
equation	 it's	 going	 to	 be	 a	 linear	 equation	 we're	 going	 to	 make	 Y	 equals	 X	 which
basically	means	 that	 for	 every	 step	 X	makes	 to	 get	 larger	 Y	 gets	 larger	 by	 the	 same
amount	and	I'm	going	to	call	this	Y	underscore	linear	Y	Y	line	linear	Y	underscore	L	I	N	E
A	 R	 "L	 I	 N	 E	 A	 R	 space	 equals	 space"	 and	 it's	 just	 Y	 equals	 X	 so	 Y	 underscore	 linear
equals	X	and	 that's	basically	 saying	 it's	 like	a	 straight	 line	 just	 slanted	upwards	every
step	 X	 gets	 bigger	 Y	 gets	 bigger	 by	 the	 same	 amount	 in	 10	 and	 if	 we	 output	 Y
underscore	linear	"1	L	I	N	E	A	R	out	10	array	0	0.1010101	0.2020202	0.3030"	all	right	I'm
going	to	stop	it	there	but	maybe	you	remember	from	when	we	printed	out	X	that	this	is
exactly	the	same	so	basically	we've	just	gone	and	we've	made	a	an	array	that	makes	the
exact	same	that	is	exactly	the	same	as	X	so	every	step	X	gets	bigger	Y	stays	the	same
amount	so	it	gets	bigger	by	the	same	amount	it	is	a	straight	line	now	again	if	you	go	to
the	curriculum	 it	goes	 through	 in	absolute	detail	how	 to	make	every	single	one	of	 the
equations	that	we're	going	to	load	into	the	CSV	and	so	if	you're	mathematically	minded
or	you	 just	want	 to	 learn	more	about	how	to	do	math	 in	Python	 I	definitely	encourage
you	to	check	that	out	it	covers	quadratic	equations	all	sorts	of	things	like	that	but	we're
not	going	to	get	into	all	of	that	right	now	just	because	I	know	it's	a	little	bit	tedious	and
everything's	 already	 loaded	 into	 a	 CSV	 so	 if	 you're	more	 on	 the	 data	 analysis	 side	 of
things	you	don't	want	to	do	all	the	math	then	we	don't	have	to	get	into	all	of	that	maybe
yeah	so	 I	encourage	you	to	check	out	 the	curriculum	either	at	 this	moment	to	see	the
rest	 of	 the	math	happen	or	 to	 load	 the	CSV	which	 I'm	about	 to	 do	 I	 actually	with	 the
benefit	of	hindsight	I	would	love	to	show	you	guys	how	to	do	a	quadratic	equation	as	well
just	because	 I	want	 to	 show	you	guys	how	 to	do	an	exponent	maybe	 this	 is	 the	math
person	in	me	showing	so	I'm	just	going	to	show	you	how	to	do	a	quadratic	really	quickly
now	this	isn't	actually	the	exact	quadratic	that	I	have	in	the	CSV	I've	sort	of	shifted	and
compressed	 that	 a	 little	 bit	 just	 to	 make	 it	 a	 nicer	 shape	 to	 listen	 to	 and	 again	 the
curriculum	goes	 into	painstaking	detail	 about	how	exactly	 that	goes	but	 I	 just	want	 to
show	you	how	to	do	an	exponent	so	a	parabola	is	the	shape	of	a	quadratic	equation	it's
basically	a	curve	that	goes	up	up	up	really	steep	as	you	get	to	the	turning	point	it	sort	of
starts	 to	 level	 out	 it	 turns	 around	 and	 then	 gets	 steeper	 and	 steeper	 as	 it	 goes	 back
down	or	up	again	depending	on	whether	or	not	you	flipped	it	so	it's	almost	like	a	wave
but	it's	not	like	the	sign	because	the	sign	goes	up	and	down	repeatedly	the	parabola	is
just	a	curve	that	turns	over	once	and	it's	steepest	at	the	sides	and	flattest	at	the	top	and
it's	the	simplest	 form	of	a	quadratic	 is	y	equals	x	squared	I'm	going	to	save	this	as	an
equation	that	or	as	a	variable	that	I'm	going	to	call	y	underscore	parabola	because	that
is	the	shape	of	a	quadratic	so	it's	going	to	be	y	underscore	"y	underscore	p	a	r	a	b	o	l	a"
parabola	 space	equals	 space	x	 squared	and	 the	 the	main	 reason	 that	 I	 am	 taking	 the
time	to	do	this	right	now	even	though	it's	all	in	that	csv	is	that	I	want	you	guys	to	know
how	 to	 do	 exponents	 in	 I	 want	 to	 recap	 how	 to	 do	 exponents	 in	 Python	 just	 in	 case
because	I	think	it's	good	to	know	so	I	always	when	I	started	doing	Python	expected	an
exponent	 to	 be	 a	 caret	 it	 is	 not	 it	 is	 two	 asterisks	 so	 x	 squared	 is	 x	 asterisk	 asterisk
square	two	"x	star	star	two"	so	y	parabola	equals	x	asterisk	asterisk	two	in	12	and	if	we



print	out	y	parabola	just	by	typing	it	and	hitting	enter	"y	line	p	a	r	a	b	o	l	a	out	12	array
0.000000000	e	plus	00	1.02030405	times"	we	had	some	crazy	numbers	 I	don't	 I	don't
find	that	easy	to	interpret	I	don't	know	about	you	I	think	they're	all	in	a	scientific	notation
that's	what	 that	 e	means	 that	 it's	 put	 it	 you	 know	 in	 the	 form	 of	 so	 for	 instance	 9e2
would	be	9	times	10	to	the	power	of	2	which	is	200	not	200	is	100	sorry	about	that	so	9
times	100	or	900	 it's	what	we	do	 for	 like	 really	 large	or	small	numbers	 in	science	and
Python	 loves	 to	 print	 things	 out	 like	 that	 sometimes	 if	 it	 gets	 a	 little	 unwieldy	 I	 don't
know	about	you	but	I	find	that	a	little	bit	difficult	to	interpret	just	listening	to	it	scientific
notation	is	a	little	bit	hard	to	interpret	just	hearing	it	or	looking	at	it	I	would	say	but	the
thing	to	keep	in	mind	again	is	that	a	parabola	a	quadratic	equation	is	that	curve	shape
going	up	and	then	down	just	once	and	if	you	want	to	see	the	exact	way	I	did	this	to	make
it	in	the	CSV	then	again	check	out	the	curriculum	it	goes	into	absolute	detail	about	how	I
made	this	this	CSV	so	you	can	have	all	the	nitty-gritty	you	can	know	the	exact	equation	I
used	 for	 everything	 and	 again	 if	 you're	 curious	 about	 that	 feel	 free	 to	 stop	 by	 office
hours	or	shoot	me	an	email	all	right	I'm	going	to	pop	out	of	um	out	of	ipython	and	into	uh
into	google	chrome	...	...	and	because	I	am	low	vision	I	am	well	accustomed	to	squinting
at	my	 computer	 so	 you	might	 notice	me	 navigating	 in	 a	 way	 that	 is	 a	 little	 bit	more
sighted	 than	 maybe	 um	 just	 fully	 using	 NVDA	 that's	 also...me	 not	 being	 a	 full	 NVDA
desktop	I	usually	use	mac	so	one	little	caveat	if	you	are	working	from	uh	the	curriculum
as	it	is	now	there's	one	little	thing	we're	going	to	need	to	do	before	we	copy	and	paste
that	little	snippet	of	code	again	this	is	under	that	subheading	just	in	case	in	the	module
preparing	data	 for	 sonification	now	 I	 have	done	a	 little	 shorthand	 in	 this	 code	 snippet
that	in	retrospect	I	shouldn't	know	so	I	might	go	back	and	fix	it	but	basically	I	am	very
accustomed	to	shortening	pandas	as	pd	you'll	see	people	do	this	a	lot	it's	just	because
it's	shorter	to	type	out	than	pandas	but	we	have	to	tell	our	computers	like	hey	I'm	going
to	 call	 pandas	 pd	 from	 now	 on	 so	 we've	 already	 imported	 pandas	 but	 we're	 actually
going	to	import	it	again	and	tell	the	computer	actually	from	now	on	I'm	going	to	call	it	pd
so	that's	just	import	"I	M	P	O	R	T	"import	pandas	"space	p	a	n	d	a	s"	as	pd	space	"a	s	pd"
import	pandas	as	pd	so	bring	in	pandas	and	from	now	on	we're	calling	it	pd	again	we've
already	brought	in	pandas	we're	into	this	ipython	session	but	now	we	need	to	remind	the
computer	tell	the	computer	hi	I'm	calling	it	something	different	now	we	only	need	to	do
this	 just	because	if	you	copy	and	paste	straight	from	the	code	I	put	 in	the	curriculum	I
call	pandas	pd	there	which	was	an	oversight	on	my	part	so	I	might	go	back	and	fix	that	I
probably	ought	to	so	I'm	going	to	hit	enter	importing	all	right	we've	imported	pandas	as
pd	 and	 now	 I	 am	 just	 going	 to	 paste	 in	 that	 line	 of	 code	 or	 those	 three	 lines	 of	 code
actually	 um	 from	 uh	 oh	 actually	 there's	 one	 other	 thing	 we	 need	 to	 cover	 before	 we
paste	in	those	lines	of	code	and	that's	going	to	be	uh	something	called	um	astropy	tables
now	astronify	 the	 sonification	package	 that	we	are	using	 today	 is	 a	package	 that	was
made	by	astronomers	 to	be	used	by	astronomers	and	we'll	get	 into	more	detail	about
what	exactly	it	is	and	how	it	works	in	a	second	but	because	it	was	made	by	astronomers
for	 astronomers	 um	 it	 uses	 a	 specific	 type	 of	 data	 a	 object	 type	 in	 python	 that
astronomers	like	to	use	this	is	something	called	an	astropy	table	astropy	is	astropython



basically	 it	 is	 a	python	package	 that	has	a	 ton	of	astronomy	 functionalities	 things	 like
astronomy	 units	 like	 things	 like	 light	 years	 and	 parsecs	 it	 also	 has	 coordinate	 system
transforms	all	sorts	of	things	like	that	are	handled	within	astropy	it	also	has	a	data	type
actually	 there's	multiple	but	 in	 this	 case	 it	 has	 this	uh	 this	 type	um	of	object	 called	a
table	for	our	purposes	here	an	astropy	table	is	exceptionally	similar	to	an	astro	uh	to	um
a	panda's	data	frame	and	in	fact	they're	so	similar	that	astropy	has	a	built	in	function	to
uh	convert	a	panda's	data	 frame	directly	 to	an	astropy	table	um	and	the	reason	we're
going	to	do	this	is	because	um	the	reason	we	want	to	do	this	is	because	uh	um	astronify
only	takes	as	input	astropy	tables	it	really	just	wants	astropy	tables	because	it	was	made
for	astronomy	data	so	we	have	to	convert	our	panda's	data	frame	to	an	astropy	table	in
order	 to	give	 it	 to	um	 in	order	 to	give	 it	 to	astronify	 to	sonify	so	what	 i'm	going	 to	do
here	is	i'm	going	to	import	table	from	astropy	so	basically	say	from	this	astropy	package
bring	in	this	table	things	we	need	it	so	i'm	going	to	type	from	"f	r	o	m"	so	from	astropy
that	space	that's	"a	s	t	r	o	p	y"	dot	table	"dot	t	a	b	l	e"	so	from	the	subsection	of	astropy
called	table	space	import	"i	m	p	o	r	t"	so	from	astropy	dot	table	import	table	except	here
table	 is	capitalized	"space	T	a	b	 l	e"	so	 from	astropy	 table	 import	 table	and	again	 the
table	that	second	table	so	not	astropy	dot	table	but	that	table	after	import	that's	got	to
be	a	capital	t	there	"in	15"	all	right	and	it's	imported	we've	brought	the	table	thing	in	so
if	i	bring	in	these	lines	of	code	i'm	just	going	to	copy	and	paste	those	three	lines	of	code
in	from	under	just	in	case	um	i'm	sorry	to	all	of	you	guys	watching	on	the	recording	that
i'm	not	reading	this	out	it	is	just	a	horrendously	long	url	um	maybe	should	i	read	it	out	oh
no	i	i'm	gonna	i'm	gonna	really	encourage	you	guys	to	go	and	copy	and	paste	this	from
the	uh	 from	 the	 curriculum	or	maybe	we	 can	put	 it	 in	 the	 description	 of	 this	 youtube
video	um	because	i	think	me	reading	it	out	loud	right	now	is	just	going	to	lead	to	some
suffering	and	also	 to	uh	 just	mistyping	 it	 i	don't	 think	 it's	going	 to	be	very	helpful	but
there	are	three	lines	in	this	code	the	first	line	that	we're	going	to	copy	and	paste	in	is	url
equals	 that	 really	 long	 url	 it's	 basically	 hey	 the	 url	 is	 called	 this	 save	 it	 as	 this	 thing
called	url	the	second	one	is	a	function	we've	seen	before	it's	df	equals	pd	dot	read	csv
url	so	it's	basically	saying	make	a	new	data	frame	called	df	and	then	pd	remember	that's
now	pandas	pandas	dot	read	csv	so	read	the	csv	at	that	url	after	url	 it's	comma	index
underscore	 call	 equals	 zero	 that	 means	 set	 the	 index	 of	 our	 new	 data	 frame	 as	 the
zeroth	column	and	 then	 the	 third	and	 final	 line	of	 code	 is	 tbl	 equals	 table	 so	 capital	 t
table	that's	the	table	we	just	imported	from	astropy	dot	from	pandas	open	parenthesis	df
close	parenthesis	what	that's	saying	is	make	a	new	table	call	it	tbl	and	make	it	from	the
pandas	data	frame	that	we've	named	df	all	right	now	i'll	finally	stop	yammering	and	copy
and	paste	that	in	well	i've	already	copied	it	warning	dialogue	warning	you	are	about	to
paste	text	that	command	prompt	terminal	ipython	i	trust	uh	it	was	asking	whether	or	not
i	trusted	that	copy	and	paste	that	was	putting	in	and	and	i	do	trust	it	because	that's	my
own	url	 this	 is	the	moment	we	cross	our	fingers	that	uh	 it's	gonna	work	um	again	first
line	 is	 the	 url	 "e	 slash	 sonification	 e	 selected	 main	 slash	 prepared	 data	 dot	 csv	 raw
equals	true	selected	slash	url	equal"	that's	it	reading	that	part	of	the	url	that's	that	first
line	 "df	 equals	 selected	 space	 selected	 pd	 dot	 read	 csv	 url	 index	 co	 l	 equals	 zero



selected"	all	right	and	that's	it	reading	the	second	line	df	equals	pd	dot	read	underscore
csv	 open	 parenthesis	 url	 that's	 the	 url	 from	 the	 first	 line	 comma	 comma	 index
underscore	call	equals	zero	and	then	finally	that	last	line	"tbl	equals	t	selected	i	selected
...that	wasn't	very	helpful	that	that	final	line	is	tbl	equals	table	capital	t	dot	from	pandas
open	parenthesis	df	 close	parenthesis	 so	make	a	make	a	 table	 from	 the	panda's	data
frame	df	and	call	it	tbl	i'm	gonna	hit	enter	and	cross	our	fingers	that	it	works	"in	16."	all
right	 no	 error	 messages	 read	 out	 that	 means	 it	 worked	 success	 all	 right	 our	 data	 is
prepared	 it	 is	 in	an	astropy	 table	 let's	 take	a	moment	 to	explore	 this	astropy	 table	 so
first	what	we're	going	to	do	is	we're	going	to	print	out	the	column	names	the	way	we	do
this	 for	an	astropy	 table	 is	by	doing	 tbl	 so	 that's	 the	name	of	our	 table	 t	b	 l	and	 then
we're	going	to	do	dot	call	dot	...	it's	already	trying	to	suggest	it	dot	c	o	l	n	a	m	e	s	tbl	dot
col	names	so	from	table	take	the	column	names	and	if	we	hit	enter	it'll	 just	print	them
out	"out	16	x	linear	n	e	g	linear	parabola	abs	sine	in	17."

all	 right	 so	 in	 this	 table	 there	 are	 six	 columns	 there	 is	 x	 linear	 neg	 underscore	 linear
parabola	abs	and	sine	these	are	the	x	actually	the	exact	same	x	that	we	made	with	that
lin	space	function	above	and	then	five	other	functions	of	x	so	variables	that	are	following
a	function	of	x	linear	is	that	y	equals	x	that	we	made	above	so	it's	just	every	step	that	x
makes	to	get	bigger	y	gets	bigger	by	the	same	amount	so	 it's	a	straight	 line	going	up
neg	underscore	linear	is	y	equals	negative	x	so	it's	still	a	straight	line	except	every	time
that	x	gets	bigger	y	gets	smaller	so	it's	a	straight	line	slanted	downwards	parabola	that's
the	quadratic	equation	we	were	talking	about	now	in	this	case	it's	not	exactly	y	equals	x
squared	it's	a	little	bit	different	um	i	believe	it's	something	like	if	i	recall	correctly	i	want
to	say	it's	let	me	take	a	look	y	equals	negative	times	the	quantity	x	minus	five	squared
plus	one	um	if	any	of	you	are	algebra	people	if	not	don't	worry	about	it	essentially	what
we	care	about	here	is	not	so	much	the	math	as	the	shape	so	we	understand	the	shape
we're	going	to	represent	with	sound	and	remember	this	is	a	curve	that	goes	up	up	up	up
new	notification	no	no	no	no	sorry	um	someone's	notification	um	okay	um	what	we	care
about	here	is	that	parabola	is	a	curve	that	goes	up	really	steep	then	as	it	starts	to	turn
over	it	gets	a	little	bit	flatter	stays	flat	turns	over	gets	steeper	again	going	down	absolute
value	what	i've	called	abs	abs	that	is	a	function	that	goes	up	up	up	and	then	very	sharply
turns	back	down	so	 it's	a	straight	 line	slanted	upwards	kind	of	 like	our	y	equals	x	and
then	it	very	sharply	turns	around	and	goes	slanted	downward	in	a	straight	line	like	our	y
equals	negative	x	and	then	finally	sine	that	 is	our	wave	so	y	equals	sine	of	x	so	that	y
goes	up	and	down	at	regular	intervals	in	a	wave	as	x	gets	bigger	all	right	so	those	are
our	 six	 columns	 of	 the	 table	 next	 let's	 just	 take	 a	 look	 at	 what's	 inside	 one	 of	 those
columns	and	the	way	we're	going	to	call	one	of	the	columns	uh	of	the	table	is	a	little	bit
different	 than	 the	 syntax	 you've	 been	 using	 with	 patrick	 to	 call	 the	 columns	 of	 the
panda's	data	frames	i	believe	we're	going	to	do	tbl	tbl	so	from	table	what	we've	called
our	tbl	that's	the	name	of	our	table	open	square	bracket	left	bracket	x	it's	already	trying
to	suggest	uh	what	we're	going	to	do	open	bracket	we're	going	to	do	quotation	mark	x
quotation	 mark	 and	 then	 close	 square	 bracket	 so	 it's	 tbl	 open	 square	 bracket	 uh



quotation	mark	x	quotation	mark	close	square	bracket	so	basically	um	 in	x	or	 in	 table
we're	calling	the	column	called	x	which	is	saved	in	quotation	marks	uh	sort	of	like	how
we	 do	 for	 pandas	 data	 frames	 they've	 they've	 got	 quotation	 marks	 around	 because
they're	a	string	they're	they're	a	word	and	then	if	we	hit	enter	"out	17	less	column	name
equals	x	type	equals	float	64	length	equals	100	greater	0.0	0.1	0	1	0	1	0	1	0	1	0	1	0	1	0
1	0	1	0.2	0	2	0	2	0	2	0	2	0	2"	all	right	i'm	gonna	stop	that	there	um	i	don't	think	we	need
to	 listen	 to	 the	whole	 thing	but	 you	might	 have	noticed	 it	was	 a	 little	 different	 at	 the
beginning	 from	 how	 a	 panda's	 data	 frame	 prints	 out	 um	 a	 column	 uh	 but	 it	 tells	 you
there's	a	column	the	column	name	is	called	x	it	tells	you	that	it's	a	float	which	means	it's
decimal	 numbers	 tells	 you	 the	 length	 of	 the	 column	 i	 actually	 don't	 i	 guess	 i	 wasn't
paying	 enough	 attention	 hopefully	 it	 said	 100	 there	 because	 there	 should	 be	 100
numbers	and	then	again	if	you	remember	from	before	those	are	the	same	numbers	that
were	in	our	x	array	that	we	got	from	numpy	dot	linspace	so	phew	this	astropy	table	has
preserved	the	data	that	we	made	and	again	the	um	and	then	that	we	put	in	that	csv	and
again	the	curriculum	goes	through	in	detail	every	step	of	how	we	made	this	synthetic	so
again	this	not	real	data	to	represent	shapes	put	 it	 in	a	data	frame	and	then	get	 it	 into
this	astropy	table	that	we	now	have	awesome	so	we	know	which	columns	are	in	our	pen
or	in	our	astropy	table	and	we've	checked	on	one	of	the	columns	to	make	sure	that	it's	a
new	notification	from	oh	this	is	new	note	of	sorry	about	that	folks	i	am	uh	i'm	borrowing
a	friend's	laptop	to	do	this	since	i	am	a	mac	user	primarily	um	and	in	fact	 i	don't	even
know	 how	 to	 put	 a	 windows	 laptop	 on	 do	 not	 disturb	 so	 we	 might	 have	 some
notifications	 coming	 in	 um	 hopefully	 not	 too	 many	 um	 okay	 moving	 onwards	 um	 so
we've	 checked	 on	 this	 astropy	 table	 we've	made	 sure	 it	 doesn't	 look	 fishy	 kind	 of	 is
behaving	for	our	purposes	an	awful	lot	like	a	panda's	data	frame	that's	good	news	that	is
all	we	 really	need	 to	care	about	and	with	 that	we	are	going	 to	uh	check	off	 that	data
preparation	 stage	 and	 celebrate	 because	 we	 are	 about	 to	 get	 into	 actually	 sonifying
things	with	one	caveat	first	i	want	us	to	talk	about	what	astronify	is	and	how	it	works	all
right	so	astronify	is	a	python	package	we've	installed	that	is	developed	by	scott	fleming
at	 the	 space	 telescope	 science	 institute	 clara	 brosser	 at	 space	 telescope	 science
institute	and	now	at	the	university	of	saint	andrews	um	jen	kotler	at	space	telescope	and
kate	meredith	at	glass	education	and	 it	 is	a	package	designed	to	sonify	or	represent	a
sound	 a	 very	 specific	 type	 of	 astronomical	 data	 called	 a	 light	 curve	 light	 curves
represent	 the	observed	amount	of	 light	 from	an	object	 typically	a	star	as	we	see	 it	on
earth	 so	 it	 observe	 it	 measures	 the	 amount	 of	 light	 we	 see	 um	 generally	 from	 a
telescope	so	how	much	light	we	are	collecting	from	a	telescope	from	a	specific	star	over
time	astronomers	 like	to	call	 that	observed	amount	of	 light	how	much	 light	we	receive
from	an	object	here	on	earth	we	 like	 to	call	 that	 flux	so	we	are	observing	 the	 flux	 the
amount	 of	 light	 seen	 from	 a	 star	 over	 time	 thus	 light	 curves	 allow	 astronomers	 to
observe	variability	 in	 the	amount	of	 light	a	 telescope	records	coming	 from	a	star	or	 to
record	how	bright	a	star	basically	appears	 to	us	on	earth	observing	this	variability	can
give	 insight	 into	 all	 sorts	 of	 incredible	 phenomena	 including	 explosive	 stellar	 activity
called	 flares	so	 that	would	be	a	sudden	 increase	 in	brightness	at	a	period	of	 time	and



small	 periodic	 dips	 in	 the	 amount	 of	 light	 observed	 from	 a	 star	 caused	 by	 a	 planet
orbiting	that	star	and	blocking	some	of	its	light	as	it	passes	through	our	line	of	sight	and
orbits	the	star	um	as	it	passes	through	our	line	of	sight	with	the	star	we	call	this	latter
phenomenon	a	an	exoplanet	transit	and	we've	used	it	to	discover	thousands	of	planets
outside	 our	 solar	 system	 orbiting	 other	 stars	 what's	 essentially	 happening	 is	 that	 at
regular	 intervals	as	 the	planet	orbits	 the	star	 it	gets	 in	between	our	 telescope	and	the
star	and	blocks	a	tiny	fraction	of	the	light	and	it	does	that	over	and	over	and	over	again
so	you	know	if	you	see	a	star	that	looks	like	it's	getting	dimmer	by	a	tiny	regular	amount
at	regular	intervals	you	can	be	like	there	might	be	a	planet	getting	in	the	way	there	and
boom	you	found	a	planet.	Astronify	works	by	mapping	the	observed	flux	again	remember
that's	the	observed	amount	of	light	we	see	from	the	star	that's	our	dependent	variable
that's	 changing	 with	 time	 to	 pitch	 such	 that	 higher	 fluxes	 are	 represented	 by	 higher
pitches	so	if	you	have	a	moment	where	you	observe	more	light	that	data	is	going	to	be
represented	 by	 a	 higher	 pitch	 each	 observation	 of	 the	 star's	 brightness	 is	 thus
represented	by	a	note	where	the	pitch	is	controlled	by	the	value	of	that	observation	it	is
worth	 noting	 here	 that	 although	 it's	 the	 default	 to	 have	 brighter	 like	 higher	 fluxes
brighter	 moments	 brighter	 data	 points	 mapped	 to	 higher	 pitches	 the	 user	 can	 set	 a
parameter	within	Astronify	 to	 invert	 the	pitches	such	 that	higher	 fluxes	more	 light	are
mapped	 to	 lower	 pitches	 there	 might	 be	 you	 know	 personal	 preference	 reasons	 you
might	 do	 that.	 We	 might	 get	 into	 discussing	 parameters	 involved	 in	 Astronify
sonifications	next	week	and	this	will	hopefully	make	some	more	sense	with	some	more
examples	so	I'm	going	to	once	again	going	to	turn	off	NVDA's	speech	mode	so	it	doesn't
talk	over	the	sonifications	speech	mode	off	speech	mode	beeps	nope	I	don't	want	it	on
speech	mode	off	all	right	and	I'm	going	to	go	to	Astronify's	example	this	is	straight	from
their	web	page	 I	highly	 recommend	that	you	check	out	Astronify's	web	page	 it's	again
linked	on	 the	curriculum	um	 it's	a	 really	 incredible	project	 I	 think	 it's	great	 so	 I	highly
recommend	you	check	it	out	and	I'm	going	to	play	something	this	is	a	sonification	of	a
light	curve	containing	a	stellar	 flare	did	you	hear	 that	 I'm	going	to	play	that	one	more
time	so	the	sound	stays	relatively	constant	until	boom	there's	this	moment	of	where	 it
gets	way	higher	pitched	and	we	know	from	the	mapping	we've	just	discussed	that	that
higher	pitch	is	representing	a	moment	where	the	star	gets	a	lot	brighter	as	we	see	it	and
that's	the	flare	a	flare	of	light	and	activity	from	the	star	that	we	can	really	clearly	hear	as
a	 change	 in	 the	 pitch	 of	 the	 sound	 representation	 of	 the	 data	 all	 right	 cool	 now	 as	 a
concept	check	moving	uh	thinking	back	to	our	discussion	of	modification	and	parameter
mapping	do	you	think	that	Astronify	is	parameter	mapping	or	modification	I'll	wait	for	a
second	it's	awkward	to	like	wait	and	and	give	you	a	chance	to	think	about	it	when	there's
like	no	one	on	like	a	zoom	call	with	me	or	anything	I'm	just	sort	of	like	yes	I	sit	in	uh	I	sit
in	 silence	 and	 I	 uh	 I	 let	 people	 hopefully	 online	 think	 about	 it	 okay	 that's	 probably
enough	time	um	so	Astronify	is	parameter	mapping	because	in	this	case	the	flux	or	how
high	y	goes	up	or	down	our	independent	or	our	dependent	variable	it	goes	up	or	down	is
mapped	to	pitch	so	it's	not	controlling	the	amplitude	of	the	sound	wave	which	remember
we	perceive	generally	as	volume	it's	controlling	the	pitch	so	that	is	a	parameter	mapping



where	we	have	mapped	the	flux	to	the	parameter	pitch	in	our	sonification	all	right	now
here	 we've	 discussed	 Astronify	 within	 the	 context	 of	 its	 intended	 use	 sonifying	 light
curves	however	light	curves	are	just	the	type	of	1d	data	or	what	I	would	call	1d	data	in
astronomy	so	we	have	 two	variables	 time	and	 flux	 x	 and	y	 I	 suppose	mathematicians
might	 tell	me	that	 they're	actually	 two	dimensions	2d	because	 it's	 time	and	 flux	 those
are	 two	 dimensions	 I'm	 going	 to	 call	 it	 1d	 variable	 um	 hopefully	 there	 are	 no
mathematicians	who	are	going	to	like	hunt	me	down	for	this	but	there	are	all	kinds	of	1d
data	out	there	including	maybe	some	data	that	you've	uh	you've	dealt	with	before	so	we
can	realistically	present	other	1d	data	using	Astronify	beyond	just	light	curves	but	before
we	get	to	all	that	complicated	stuff	let's	go	back	to	that	sonification	education	point	we
were	getting	back	before	and	this	was	 inspired	by	a	talk	that	Scott	Fleming	one	of	the
developers	 of	 Astronify	 gave	 at	 the	 Space	 Telescope	 Science	 Institute's	 Day	 of
Accessibility	 wherein	 he	 talked	 about	 about	 sonification	 education	 and	 gave	 some
examples	where	we	sonify	um	where	we	where	he	sonified	with	Astronify	some	of	these
simple	shapes	very	similar	 to	what	we're	about	 to	do	so	now	we're	going	to	make	our
own	sonifications	you're	going	to	get	a	sense	for	what	Astronify	does	all	right	I'm	going
to	 turn	my	 volume	 down	 a	 little	 bit	 so	 I	 don't	 blast	 our	 ears	 out	 with	 uh	 with	 NVDA
"speech	mode	speech	mode	talk"	I'm	going	to	turn	the	volume	up	uh	I'm	going	to	turn
the	volume	up	hopefully	not	too	much	hopefully	that's	a	reasonable	amount	of	volume
we'll	hope	for	the	best	okay	we've	installed	Astronify	but	we	haven't	imported	it	into	this
Python	 session	 so	 what	 I'm	 going	 to	 do	 is	 I'm	 going	 to	 write	 from	 "F-R-O-M"	 from
Astronify	 that's	 "A-S-T-R-O-N-I-F-Y.series"	 it	wants	 to	 finish	 for	me	but	 I've	 like	 finished
the	sentence	or	finished	the	line	for	me	but	I'm	not	gonna	let	it	from	Astronify	A-S-T-R-O-
N-I-F-Y	 dot	 series	 "dot	 s-e-r-i-e-s"	 so	 from	 the	 subsection	 of	 Astronify	 series	 import	 so
space	"space	i-m-p-o-r-t"	import	and	we're	going	to	import	a	function	called	Soni	series
that	 is	 capital	 s	 so	 capital	 S-o-n-i-series	 capital	 S-e-r-i-e-s	 so	 the	 s	 in	 sauna	 and	 the	 s
beginning	series	are	capitalized	from	Astronify	series	from	dot	series	import	sauna	series
"wx	python	is	not	found	for	the	current	python	version	pyo	will	use	a	minimal	gui	toolkit
written	 with	 tkinter	 if	 available	 this	 toolkit	 has	 limited	 functionalities	 and	 is	 no	 more
maintained	or	updated	if	you	want	to	use	all	of	pyos"	all	right	so	I	just	let	it	play	some	of
a	warning	that	came	out	I	think	a	lot	of	people	have	been	getting	this	warning	I've	been
getting	this	warning	I	think	Patrick	did	as	well	I	heard	from	some	other	people	from	the
live	class	that	they	got	this	warning	nothing	to	worry	about	it's	just	like	a	little	warning
maybe	 bad	 advice	 but	 I	 often	 ignore	 warnings	 if	 it's	 not	 an	 actual	 error	 message	 so
maybe	don't	take	that	to	heart	but	I	just	wanted	you	to	hear	it	so	that	if	you	hear	it	on
your	computer	you	don't	worry	it's	no	biggie	and	now	we're	going	to	get	started	with	the
sonification	now	this	 is	going	to	 involve	 inherently	some	kind	of	 repetitive	 four	 lines	of
code	I'm	going	to	go	through	the	first	time	or	two	relatively	slowly	but	then	I	encourage
you	and	then	I'm	going	to	get	faster	just	to	you	know	so	we	don't	take	too	much	time	it's
again	all	of	 these	 lines	of	code	are	on	the	online	curriculum	so	 if	you	get	 lost	 if	 I	start
moving	too	quickly	at	some	point	just	go	and	copy	and	paste	it	because	it's	all	a	little	bit
repetitive	it's	like	the	same	thing	with	like	one	word	changed	so	there's	no	shame	in	like



copying	 and	 pasting	 as	 long	 as	 you	 understand	 what's	 going	 on	 and	 couldn't	 do	 it
yourself	 afterwards	but	most	 programmers	 copy	and	paste	 so	what	we're	 going	 to	do
first	 is	make	an	 instance	of	a	soni	 series	so	 the	sauna	series	 is	a	class	we're	going	 to
make	a	soni	series	object	I'm	going	to	call	it	soni	underscore	linear	"s	o	n	i"	underscore
linear	"	l	i	n	e	a	r"	soni	underscore	linear	and	I'm	going	to	do	equals	space	equals	and	I'm
going	to	do	um	and	the	reason	I'm	calling	it	soni	linear	is	because	this	is	going	to	be	the
sonification	object	the	sauny	series	object	for	a	linear	equation	so	remember	that's	our
straight	line	going	up	"space	s	o	n	i	s	e	r	i	e	s"	remember	that's	all	one	word	with	the	s	in
soni	and	the	s	in	series	both	capitalized	then	open	parenthesis	tbl	so	make	a	soni	series
object	from	our	table	which	we've	called	tbl	now	there	are	two	extra	things	we	need	to
do	here	in	this	function	and	that	is	we	need	to	say	hey	astronify	I	know	you're	made	for
astronomers	sonifying	light	curves	but	um	actually	so	I	know	that	you	expect	these	time
columns	and	value	columns	to	be	like	time	and	flux	but	actually	we	don't	have	time	and
flux	we	have	like	x	and	linear	that's	the	name	of	our	columns	so	we're	just	going	to	tell
soni	 series	hey	expect	 time	 call	 the	 time	 column	 to	be	x	 and	val	 call	 to	be	 linear	 the
value	column	so	that's	tbl	comma	space	time	"t	i	m	e"	underscore	c	o	l	"line	c	o	l"	equals
"equals"	open	quotation	mark	x	close	quotation	mark	so	say	the	time	call	is	our	x	column
that's	 the	name	that	we	printed	out	above	when	we	checked	the	column	names	 in	 tbl
comma	 "comma"	 space	 "space"	 and	 then	 the	 value	 column	 which	 is	 val	 col	 "v	 a	 l"
underscore	 "line	 c	 o	 l"	 c	 o	 l	 equals	 "equals"	 quotation	 mark	 linear	 "l	 i	 n	 e	 a	 r"close
quotation	mark	close	parenthesis	soni	underscore	 linear	equals	soni	series	with	the	s's
capitalized	 open	 parenthesis	 tbl	 comma	 time	 underscore	 c	 o	 l	 equals	 open	 quotation
mark	x	quote	close	quotation	mark	comma	v	a	l	underscore	c	o	l	equals	open	quotation
mark	linear	close	quotation	mark	close	parenthesis	here's	the	next	line	well	we	haven't
actually	played	anything	we've	just	made	the	object	there's	another	little	step	I	want	to
take	I	want	to	say	hey	sonification	um	make	the	notes	kind	of	a	wider	spacing	and	this	is
something	 I've	 played	 around	 with	 already	 um	 and	 a	 choice	 that	 I've	 made	 again
remember	 how	 data	 representations	 involve	 a	 lot	 of	 choice	 I'm	 increasing	 the	 note
spacing	here	from	the	default	just	so	it's	a	little	bit	slower	and	easier	to	hear	so	the	way
we're	 going	 to	 do	 it	 is	we're	 going	 to	 do	 soni_linear	 the	 thing	we	 just	made	 dot	 note
underscore	 spacing	 dot	 n	 o	 t	 e	 that's	 note	 n	 o	 t	 e	 underscore	 space	 equals	 "space
equals"	 space	and	 I'm	going	 to	set	 it	 to	0.05	 this	 is	 something	 that	 I	have	 in	advance
tested	and	decided	is	a	good	note	spacing	for	us	again	choices	we	can	make	"0.05"	all
right	sonny	underscore	linear	dot	note	spacing	equals	0.05	in	21	all	right	we've	changed
the	note	spacing	now	we're	going	to	do	soni	underscore	linear	"s	o	n	i"	underscore	linear
"line	l	i	n	e	a	r"	dot	sonify	that	means	make	the	sound	representation	of	this	thing	"s	o	n
i...	 one"	 open	parenthesis	 close	parenthesis	 because	 it's	 a	 function	but	we	don't	 have
any	 parameters	 we	 want	 to	 put	 in	 so	 sonny	 underscore	 linear	 dot	 sonify	 make	 the
sonification	make	the	sound	representation	"in	22"	and	the	 last	thing	we	need	to	do	 is
soni	underscore	 linear	dot	play	open	parenthesis	close	parenthesis	all	 right	and	 this	 is
the	moment	where	I	will	once	again	turn	off	NVDA	so	it	doesn't	talk	at	us	um	you	might
get	a	warning	that	says	like	port	MIDI	closed	that's	what	NVDA	is	going	to	try	to	read	for



me	if	you	get	that	warning	uh	don't	worry	about	it	um	but	I	have	uh	"speech	mode"	off
I've	turned	off	speech	mode	I'm	going	to	turn	up	my	volume	and	I'm	going	to	hit	enter
and	 it	 will	 play	 our	 sonification	 before	we	 start	 again	 remember	what	we're	 sonifying
we're	sonifying	the	shape	of	a	straight	line	slanted	upwards	so	as	time	as	x	gets	bigger
we	should	expect	y	to	get	bigger	and	remember	y	is	mapped	to	pitch	I'm	going	to	play
that	again	 I'm	 just	typing	that	same	line	again	exact	same	thing	 just	so	 I	can	play	 it	a
second	time	okay	can	you	hear	that	the	pitch	gets	higher	and	higher	in	a	sort	of	straight
line	as	we	move	along	in	time	which	is	the	same	as	moving	along	along	that	value	you
might	hear	this	sort	of	this	sort	of	wobble	that's	just	because	there's	like	a	little	bit	of	a
spacing	again	that's	actually	the	spacing	I've	done	between	the	notes	where	I've	spread
them	out	where	there's	a	little	bit	of	space	but	some	overlap	between	the	notes	and	your
ears	hear	that	as	like	kind	of	a	wobble	in	the	noise	but	the	pitch	in	general	is	going	up	in
a	 straight	 line	 representing	 that	 straight	 line	 speech	mode	 speech	mode	 talk	 all	 right
NVDA	is	back	on	turn	the	volume	back	down	so	we	don't	hurt	my	ears	here	okay	we've
got	plenty	of	 time	so	that's	good	 let's	sonify	our	negative	 linear	equation	so	that's	 the
straight	 line	 slanted	 downwards	 and	 I'm	going	 to	 this	 is	 the	 exact	 same	 lines	 of	 code
except	 instead	 of	 calling	 it	 sonny	 linear	 I'm	 going	 to	 call	 it	 sonny	 underscore	 neg
underscore	 linear	 and	 instead	 of	 the	 value	 column	 being	 linear	 it's	 going	 to	 be	 neg
underscore	 linear	which	 is	 the	name	of	 that	 negative	 line	 column	 in	 the	 table	 so	 let's
repeat	those	same	four	lines	of	code	"s	o	n	i	line	n	e	g	line	l	i	n	e	a	r	space	equals"	so
soni	underscore	s	o	n	i	underscore	neg	underscore	linear	equals	space	soni	series	s	o	n	i
again	remembering	those	capital	s's	s	e	r	i	e	s	soni	series	again	take	open	quote	or	open
parenthesis	tbl	make	a	soni	series	from	our	table	tbl	"comma	time	call	space	i	m	e	line	c
o	 l"	 sorry	 that	 should	 be	 time	 call	 that	 k	 was	 an	 accident	 time	 call	 so	 remember	 it
expects	the	x-axis	the	independent	variable	to	be	called	time	we've	called	it	"equals	tick
x	tick"	we've	called	it	x	"comma"	and	our	val	col	space	a	"l	line	c	o	l"	our	value	column
equals	 in	 this	 case	 is	 neg	 linear	 tick	 "n	 e	 g	 line	 l	 i	 n	 e	 a	 r	 tick"	 right	 paren	 sonny
underscore	neg	underscore	linear	equals	sauna	series	open	parenthesis	tbl	comma	time
underscore	 col	 equals	 open	 quotation	 mark	 x	 close	 quotation	 mark	 comma	 val
underscore	call	equals	open	quotation	mark	neg	underscore	linear	close	quotation	mark
close	parenthesis	make	us	on	a	series	object	from	the	table	call	it	soni	neg	linear	where
the	time	column	is	x	and	the	value	column	is	neg	linear	"in	25."	all	right	we're	going	to
once	again	change	the	note	spacing	"s	o	n	i	line	n	e	g	line	l	i	n	e	a	r"	sonny	underscore
neg	underscore	linear	dot	notice	underscore	spacing	"dot	n	o	t	e	line	s	p	a	c	i	n	g	space"
so	 soni	 underscore	 neg	 underscore	 linear	 dot	 note	 underscore	 spacing	 equals	 "equals
space"	0.05	"0.05"	that's	the	same	as	we	did	before	"in	26"	and	then	remember	those
last	two	lines	"s	o	n	i"	soni	underscore	neg	underscore	linear	"line	s	s	n	e	g	line	l	i	n	e	a	r"
soni	 underscore	neg	underscore	 linear	dot	um	sonify	 "s	 o	n	 i	 f	 y	 left	 and	 right	paren"
open	 and	 close	 parenthesis	 we	 don't	 have	 anything	 in	 them	 sonny	 underscore	 neg
underscore	 linear	 dot	 sonify	 parentheses	 in	 27	 and	 then	 the	 last	 line	 is	 that	 sonny
underscore	 neg	 underscore	 linear	 dot	 play	 open	 quote	 or	 open	 parenthesis	 close
parenthesis	"s	o	n	i	line	n	e	g	line	l	i	n	e	a	r	dot	p	l	a	y	left	right	paren"	and	i'm	going	to



turn	off	nvda	again	"speech	mode	off"	and	i'm	going	to	turn	the	volume	up	and	you	can
hear	 the	pitch	 starts	 high	and	goes	 low	 let's	 play	 that	 again	 i	 keep	expecting	 to	 hear
nvda	like	read	the	line	because	i'm	typing	the	same	line	again	right	now	to	play	it	again
um	and	i	expected	to	speak	to	me	but	of	course	i	just	turned	speech	off	so	um	jokes	on
me	 i	guess	 that's	my	own	 fault	 soni	underscore	neg	underscore	 linear	 to	play	 it	again
excellent	all	right	i'm	going	to	do	one	more	thing	you	can	hear	again	it	goes	much	in	the
same	way	 that	 sonny	 linear	went	 up	 in	 a	 straight	 line	 here	 the	 pitch	 goes	 down	 in	 a
linear	fashion	it	goes	down	in	a	straight	line	with	time	because	this	is	representing	a	line
slanted	 downwards	 all	 right	 let's	 um	 i'm	 gonna	 do	 one	more	 thing	 i'm	 gonna	 do	 soni
underscore	 linear	dot	play	so	you	can	hear	that	 just	sort	of	side	by	side	so	this	 is	 that
straight	 line	 slanted	up	sonny	underscore	 linear	dot	play	 just	 to	play	 that	 straight	 line
slanted	upwards	 this	 time	cool	can	you	hear	 that	yeah	 it's	going	up	 the	pitch	goes	up
this	time	instead	of	down	i	feel	like	i	can	almost	like	feel	it	going	up	um	maybe	that's	sort
of	a	weird	thing	to	say	maybe	i've	just	listened	to	a	lot	of	astronify	uh	sounds	um	it's	kind
of	fun	and	spacey	i	like	these	they	kind	of	feel	like	aliens	in	a	fun	way	i	like	it	um	all	right
i'm	going	to	turn	speech	mode	back	and	i'm	going	to	remember	to	turn	the	volume	down
so	we	don't	like	pain	anyone	all	right	and	what	i'm	going	to	do	next	is	i'm	going	to	sonify
the	sine	wave	function	remember	that	is	um	our	wave	that	goes	up	and	down	y	equals
sine	of	x	it's	a	wave	that	goes	up	and	down	now	we	are	again	this	is	the	same	four	lines
of	code	where	we	make	the	sauna	series	object	we	change	the	note	spacing	we	sonify	it
and	we	 hit	 play	 and	 uh	 just	with	 those	 couple	 of	 little	 differences	 but	 because	 it's	 so
similar	i'm	going	to	start	moving	a	little	quicker	again	all	of	this	code	is	on	the	curriculum
online	feel	free	to	copy	and	paste	if	you	you	know	feel	the	need	um	i	understand	but	also
make	 sure	 you	 understand	 what's	 going	 on	 so	 this	 time	 i'm	 going	 to	 call	 it	 soni
underscore	sine

"s-i-n-e	s-o-n-y	line	l-i-n-e"	l've	called	it	sonny	line	i	actually	want	to	call	it	soni	sine	"s-i-n-
e"	all	 right	soni	underscore	s-i-n-e	"equals	space"	equals	Soni	Series	with	those	capital
s's	open	parenthesis	tbl	comma	space	time	call	underscore	equals	x	in	quotation	marks
x	comma	val	col	a	underscore	c	o	l	equals	sine	because	that's	the	name	of	the	column
with	the	sign	function	in	our	table	and	again	if	you	don't	remember	you	can	always	just
do	tbl	dot	col	names	and	hit	enter	to	print	out	the	list	of	column	names	in	your	table	if
you	need	to	check	"s-i-n-e	tick"	and	again	remember	sign	is	in	quotation	marks	and	it's
spelled	s-i-n-e	and	close	the	parenthesis	or	it'll	throw	an	angry	"in	31"	changing	the	note
spacing	soni	dot	sine	"line"	soni	underscore	sine	sorry	not	soni	dot	sine	dot	note	spacing
underscore	 spacing	 "s-p-a-c-i-n-g"	 space	 equals	 0.05	 "0.05"	 soni	 underscore	 sine	 dot
note	underscore	 spacing	equals	0.05	 just	move	 the	notes	a	 little	 further	 apart	 "in	32"
soni	 underscore	 sine	 dot	 sonify	 "s-o-n-i-line	 s-i-n-e	 dot	 s-o-n-i-f-y"	 son	 underscore	 sign
dot	 sonify	 "left	 paren	 right	 paren"	 make	 those	 parenthesis	 "in	 33"	 hit	 enter	 sonny
underscore	 sign	 s-o-n-i-line	 s-i-n-e	 dot	 play	 and	 we	 will	 do	 the	 same	 business	 of
increasing	the	volume	and	turning	off	nvda	"speech	mode	off"	and	hitting	enter	oh	that
one's	a	lot	more	fun	right	i	think	that	one's	a	lot	more	exciting	than	the	straight	lines	you



can	hear	the	as	the	as	that	wave	goes	up	and	down	so	as	y	gets	higher	and	then	lower
higher	and	then	lower	the	pitch	goes	up	and	down	and	up	and	down	at	regular	intervals
i'm	gonna	play	 that	 one	 again	 actually	 because	 i	 really	 quite	 like	 that	 one	 so	 i'm	 just
typing	 that	 same	 line	 sonny	underscore	 sign	dot	 play	 cool	 that's	 our	 sine	wave	we've
played	two	different	lines	one	going	up	one	going	down	and	we've	also	played	our	sine
wave	 let's	 turn	 the	 volume	back	down	 "speech	mode	 talk"	 all	 right	 there	are	 just	 two
more	functions	to	sonify	here	they	are	our	quadratic	or	our	parabola	so	again	that's	the
curve	that	starts	steep	turns	over	once	a	little	bit	smoother	at	the	top	and	then	uh	turns
back	downwards	and	gets	really	steep	again	and	then	also	our	absolute	value	function
which	um	goes	up	in	a	straight	line	very	sharply	turns	back	around	and	goes	right	back
down	the	goal	here	is	i	want	to	sonify	these	two	i'm	going	to	play	them	actually	side	by
side	so	i'm	going	to	make	both	sonifications	wait	to	play	them	until	they're	side	by	side
because	i	want	you	guys	to	learn	to	hear	the	difference	between	a	sharp	turnaround	and
a	more	 gradual	 turnaround	 so	 a	more	 gradual	 turnaround	 in	 our	 parabola	 which	 is	 a
smoother	curve	and	then	a	really	sharp	turnaround	in	the	absolute	value	and	again	we're
going	to	move	a	little	quickly	through	the	code	here	so	feel	free	to	copy	and	paste	or	to
check	 the	curriculum	 if	 you	need	 to	 so	 that's	 so	 i'm	going	 to	 call	 this	 soni	underscore
parabola	 space	 equals	 space	 and	 then	 it's	 Soni	 Series	 not	 forgetting	 those	 capital	 s's
open	 the	 parenthesis	 table	 time	 underscore	 col	 equals,	 equals	 x	 with	 x	 in	 quotation
marks	 another	 comma	 space	 val_col	 =	 here	 it	 is	 called	 'parabola'	 is	 the	 name	 of	 the
column	"in	36"	all	right	we've	made	our	parabola	sauna	series	we're	gonna	change	the
note	spacing	"s	o	n	 i	 line	p	a	r	a	b	o	 l	a	dot	n	o	t	e	 line	s	p	a	c	 i	n	g"	soni	underscore
parabola	dot	note	underscore	 spacing	space	equals	 space	0.05	 "0.05"	 same	as	before
just	doing	that	because	that's	what	i	tested	and	i	think	sounds	best	feel	free	to	change
that	note	spacing	make	it	bigger	or	smaller	and	see	what	you	think	"in	37"	again	that's
tweaking	with	uh	with	 the	parameters	of	 the	sonification	 to	see	what	you	prefer	again
full	of	choices	then	soni	underscore	parabola	"s	o	n	 i	 line	p	a	r	a	b	o	 l	a"	dot	sonify	so
make	the	sound	representations	and	i'm	gonna	hit	enter	but	i'm	not	gonna	do	um	soni
underscore	parabola	dot	play	just	yet	because	again	i	want	to	sonify	the	absolute	value
thing	at	the	thing	function	at	the	same	time	so	let's	do	that	really	quick	i'm	going	to	call
that	 sonny	 underscore	 abs	 abs	 because	 sonny	 underscore	 absolute	 underscore	 value
sounds	really	painful	to	type	out	so	abs	soni_abs	=	SoniSeries	with	the	capital	s	space	"s
o	n	i	s	e	r	i	e	s"	soni	series	open	the	parenthesis	tbl	comma	time_col='x'	remembering
our	quotation	marks	val_col	made	a	typo	there	v	a	l	underscore	c	o	l	i	feel	like	that's	kind
of	easy	to	make	a	typo	on	equals	abs	because	that's	also	what	the	name	of	that	column
is	because	i	guess	i	never	wanted	to	type	absolute	value	so	i	just	called	everything	abs
so	soni	underscore	abs	equals	sauna	series	open	parenthesis	tbl	comma	time	underscore
call	 equals	 open	 tick	 or	 open	 quotation	mark	 um	 x	 close	 quotation	mark	 comma	 val
underscore	call	equals	open	quotation	mark	abs	close	quotation	mark	close	parenthesis
"in	39"	soni	underscore	abs	dot	note	spacing	we're	changing	the	note	spacing	s	o	n	i	dot
a	b	s	nope	i	did	i	did	soni	i	did	soni	dot	abs	i	meant	to	do	soni	underscore	abs	nope	i	did
space	 i'm	gonna	do	soni	underscore	abs	dot	note	spacing	sorry	my	brain	 is	apparently



leaving	me	 "dot	 n	 o	 t	 e	 line	 s	 p	 a	 c	 i	 n	 g"	 soni	 underscore	 abs	 dot	 note	 underscore
spacing	equals	0.05	all	right	 importing	and	then	sonny	underscore	abs	dot	sonify	open
and	close	the	parenthesis	and	now	we	can	play	the	parabola	so	that	smooth	curve	going
up	and	then	turning	around	going	down	next	to	the	absolute	value	which	 is	that	sharp
turnaround	like	the	top	of	a	triangle	so	first	 i'm	going	to	do	the	uh	i'm	going	to	do	the
parabola	 that's	 soni	 underscore	 parabola	 dot	 play	 soni	 underscore	 parabola	 dot	 play
open	and	close	in	the	parenthesis	and	again	turning	off	nvda	"speech	mode	off"	turning
up	 the	volume	and	hitting	enter	oh	no	we	have	an	error	 "speech	mode	beeps	 speech
mode	talk"	this	is	terrible	"line	a	b	s	dot	p	l	a	left	right	paren	pio	warning	port	midi	closed
in	 43"	 interesting	 um	 i	 got	 an	 error	 when	 i	 tried	 to	 play	 the	 parabola	 but	 the	 uh	 the
absolute	value	seems	to	have	played	let	me	try	the	uh	let	me	try	the	parabola	again...
...that's	soni	underscore	parabola	dot	play	open	parenthesis	close	parenthesis	i'm	going
to	 turn	off	nvda	and	hope	 it	works	 this	 time	 "speech	mode	off"	all	 right	 i	 guess	 it	will
work	this	time	i	guess	it	was	just	angry	before	i'm	going	to	turn	nvda	back	on	so	i	can
play	the	absolute	value	again	"speech	mode	beeps	speech	mode	talk"	that's	going	to	be
soni	underscore	abs	"speech	mode	off"	so	that's	sonny	underscore	abs	dot	play	you're
going	up	up	up	up	up	and	then	suddenly	changing	and	going	back	down	at	a	constant
rate	 let	me	play	 the	 parabola	 one	 last	 time	 so	 you	 can	 hear	 them	 side	 by	 side	 again
again	 that's	 sonny	underscore	parabola	dot	play	open	and	close	 the	parenthesis	 it's	a
much	slower	change	to	the	pitch	turning	and	going	back	down	we	are	 literally	hearing
the	difference	in	those	shapes	a	sharp	versus	a	slow	turnaround	i	encourage	you	to	play
that	often	on	your	end	just	until	you	get	that	sound	for	the	feeling	for	it	and	again	play
all	of	the	sonifications	again	and	again	i'm	going	to	play	the	sign	again	sonny	underscore
sign	dot	play	we	can	hear	that	wave	pattern	going	up	and	down	that	we	don't	have	in
that	absolute	value	or	the	parabola	the	there's	more	turnarounds	in	the	pitch	going	up
and	down	than	we	have	in	those	other	two	shapes	so	again	the	goal	here	is	to	develop
an	 intuition	 for	 what	 astronomy	 is	 doing	 and	 how	 different	 shapes	 how	 different
behaviors	 of	 our	 data	 because	 again	 this	 is	 all	 about	 a	 representation	 of	 the	 data	 it's
what	is	this	y	doing	as	x	changes	which	we	have	represented	as	what	is	the	pitch	doing
as	 time	 changes	 it's	 developing	 this	 intuition	 for	what	 is	 going	 to	 happen	 to	 our	 data
representation	for	different	types	of	data	behavior	that	is	the	goal	here	that	is	all	about
what	 this	 education	 process	 is	 about	 this	 is	 what	 we	 teach	 people	 to	 do	 with	 data
visualization	for	years	and	what	we're	just	developing	an	intuition	for	now	this	is	where
i'm	going	to	conclude	the	fourth	tutorial	from	this	non-visual	data	science	tutorial	series
this	 is	 the	first	of	 two	sonification	tutorials	and	the	fourth	of	 five	total	 tutorials	so	next
week	we'll	pick	up	with	more	data	sonification	using	astronomy	getting	with	some	more
realistic	data	i'm	really	excited	to	see	you	there	i'm	excited	to	do	more	sonification	with
you	again	we	are	very	grateful	to	pandas	and	num	focus	for	generously	supporting	this
tutorial	series	and	i	encourage	you	if	you	have	questions	to	reach	out	to	me	or	patrick
via	email	or	to	come	to	our	office	hours	same	zoom	link	as	the	tutorials	6	to	8	p.m	uk
time	on	zoom	and	also	to	check	out	our	curriculum	online	where	all	of	this	code	is	hosted
yeah	 thank	 you	 so	much	 for	 coming	 i'm	 excited	 to	 talk	more	 sonification	with	 you	 all



next	week	hopefully	 in	a	 live	recording	 if	 the	sound	permits	all	 right	thanks	all	 i'm	just
gonna	wait	a	few	seconds	because	i'm	worried	the	recording	is	gonna	like	cut	off	the	last
few	seconds	um	and	i	don't	want	it	to	cut	off	 like	the	actual	end	so	if	this	is	still	 in	the
video	sorry	 for	 this	 like	awkward	 few	extra	seconds	where	 i'll	 like	wave	at	 the	camera
and	 sort	 of	 ramble	 on	 rambling	 rambling	 rambling	 also	 crossing	 my	 fingers	 that	 the
recording	worked	because	if	that	didn't	work	i'll	be	quite	sad	and	i	guess	sit	here	for	two
more	hours	which	would	make	me	quite	sad	um	so	fingers	crossed	everyone	i	suppose	if
you're	 seeing	 me	 still	 rambling	 here	 then	 it's	 worked	 all	 right	 i	 think	 that's	 probably
enough	time	i'm	gonna	go	stop


