
Data	Science	Fundamentals	in	Pandas	(Nonvisual	Data
Science	Workshop	#2)
(0:00	-	0:34)

So	let's	go	ahead	and	get	started.	Welcome	all.	 I'm	really	excited	to	have	you	here	for
the	second	workshop	in	our	non-visual	data	science	workshop	series.

I	am	Patrick	Smyth,	and	I'll	say	a	little	about	myself	in	a	minute,	but	once	we	get	some	of
the	 procedural	 stuff	 out	 of	 the	 way,	 this	 is	 the	 second	 workshop	 in	 the	 series.	 It	 is	 a
workshop	 on	 an	 intro	 to	 data	 science	 fundamentals	 with	 pandas,	 and	 we'll	 talk	 about
what	pandas	is.	We'll	even	talk	a	little	about	what	data	science	is,	though	that's	a	little
bit	of	an	unsatisfying	answer	sometimes.

(0:35	-	0:44)

I'd	also	 like	to	 introduce	our	helpers	who	are	going	to	be	 in	the	chat.	We	have	with	us
Sarah	Kane.	Maybe,	Sarah,	you	could	say	hi.

(0:45	-	2:01)

Hi,	 my	 name	 is	 Sarah.	 I'll	 be	 one	 of	 the	 helpers	 today.	 I'll	 be	 teaching	 some	 of	 the
tutorials	later	on.

Thank	 you,	 my	 co-leader.	 Elizabeth,	 do	 you	 want	 to	 introduce	 yourself?	 Yeah,	 hi
everyone.	 My	 name	 is	 Elizabeth,	 and	 I	 am	 a	 postdoc	 at	 the	 Institute	 of	 Astronomy	 in
Cambridge.

Today,	I	will	try	to	answer	your	questions	in	the	chat	as	quick	as	I	can.	Excellent.	I	don't
know	if	Alex	is	here	yet.

I	am	here.	Excellent.	Let	me	give	you	permission.

You	 want	 to	 go	 ahead	 and	 introduce	 yourself?	 Hi,	 I'm	 Alex.	 I'm	 a	 PhD	 student	 at	 the
Institute	of	Astronomy	with	Sarah	and	Elizabeth.	I'm	a	Python	man.

I	will	 help	 you	with	 all	 Python	 things	 in	 the	 chat.	 Thank	 you,	Alex.	We	may	also	 have
joining	 us	 Stephen	 Zweibel,	 who	 is	 a	 Digital	 Scholarship	 Librarian	 at	 the	 Graduate
Center,	City	University	of	New	York	here	in	New	York.

Hello.	Steve,	you're	online.	Yes,	I'm	here.

Sorry.	 It's	a	snow	day	here.	Yeah,	your	children	are	home,	so	 I	understand	how	this	 is,
but	thank	you.

(2:03	-	6:03)

It's	 also	 possible	we	may	 have	 Paul	 Alexander	 Bloom	and	Monika	 Thieu,	who	 are	 two
psychologists	 and	also	 teachers	 of	R	 and	Python	 joining	us.	 You	may	 see	 them	 in	 the
chat	as	well.	Basically,	the	way	the	chat	will	work	is	if	you	have	a	question,	place	it	in	the
chat.

If	 you	 want	 to	 ask	 your	 question	 privately,	 you	 can	 use	 the	 private	 chat	 interface	 on
Zoom	to	reach	out	to	one	of	the	helpers	specifically.	We	also,	 I	believe,	are	having	our
helpers.	Their	names	should	have	helper	in	them.

If	that	is	the	case,	that	will	help	you	out	if	you	want	to	send	a	private	message.	Just	feel
free	to	put	most	of	your	questions	 in	the	chat	publicly,	and	a	helper	will	either	answer
you	either	privately	or	publicly.	They'll	answer	publicly	if	they	think	that	the	answer	will
help	other	people	who	are	following	along.

I'd	 like	to	now	really	quickly	share	a	 link	to	the	curriculum	for	this	workshop.	 It	 is	on	a
website	called	GitHub.	My	recommendation	is	if	you're	using	NVDA,	GitHub	tends	to	add
a	bunch	of	buttons	and	other	information	before	you	actually	get	to	the	curriculum	part.

I	 would	 navigate	 by	 heading	 to	 the	 heading	 one	 on	 the	 page.	 It	 may	 not	 be	 the	 first
heading	one.	Navigate	by	heading	or	H1	 to	get	 to	 the	beginning	on	each	page	of	 the
actual	curriculum.

We	have	our	helpers.	Let's	go	ahead	and	do	a	little	introduction	to	the	topic	here.	I'll	just
say	who	I	am.

I'm	 background	 a	 little	 bit	 after	 the	 last	 one.	 I	 have	 retinitis	 pigmentosa,	 so	 it's	 a
progressive	 eye	 condition.	 Over	 the	 last	 15,	 20	 years,	 I've	 lost	 vision	 progressively,
started	outside	it,	and	now	I	have	about	2%	vision	remaining.

Some	useful	vision,	I	think,	would	be	the	word	for	that.	I	used	to	be	very	low	vision,	very
focused	 on	 magnification,	 high	 contrast,	 and	 all	 of	 those	 assistive	 technologies.	 I	 still
occasionally	use	those	in	some	circumstances,	but	now	I'm	more	of	a	daily	screen	reader
user.

I	 also	 use	 Linux	 day	 to	 day.	 Sometimes,	 if	 you	 see	 me	 flailing	 around	 a	 little	 bit	 on
Windows,	then	that	gives	some	explanation.	I	come	out	of	the	digital	humanities,	which
is	 a	 field	 in	 the	 humanities	where	we	 use	 computers	 to	 answer	 traditional	 humanities
questions,	 so	 things	 like	 natural	 language	 processing,	 if	 you	 want	 to	 use	 a	 more
programmer	term,	to	analyze	large	data	sets.

I	also	build	websites	and	do	other	fun	things	like	that.	I	started	learning	Python	about	10
years	 ago,	 maybe	 a	 little	 more	 now,	 which	 makes	 me	 feel	 like	 time	 is	 really	 flying.	 I
really	 felt	 when	 I	 learned	 Python	 that	 it	 really	 changed	 my	 perspective	 on	 using
computers	and	empowering	me	to	do	things	that	I	couldn't	do	before.

I	really	also	found	that	I	enjoyed	teaching	programming	to	other	people	because	I	like	to
share	 that	 feeling	 of	 empowerment,	 for	 lack	 of	 a	 better	 word,	 to	 give	 you	 new
capabilities.	 I	 really	enjoy	 that	part	of	my	 job.	 I	also	want	 to	 thank	NumFocus	and	 the
Pandas	project.

We'll	 talk	 about	 Pandas	 in	 a	minute,	 for	 funding	 these	workshops.	A	 special	 thanks	 to
Patrick	Hoffler,	who	 is	a	Pandas	core	developer,	who	really	stood	up	and	allowed	us	to
submit	this	grant.	Thank	you,	Patrick.

(6:03	-	9:02)

All	right.	Let's	just	say	really	quickly,	and	we'll	move	on	from	this	very	briefly,	because	I
don't	think	this	is	a	very...	In	a	way,	it's	not	that	useful	a	question,	but	we're	moving	now
into	the	data	science	part	of	this	workshop	series.	The	question	is,	what	is	data	science?
What	are	we	doing	when	we	do	data	science?	What	are	we	talking	about	when	we	talk
about	 data	 science?	 Somewhere,	 a	 little	 hazy,	 but	 somewhere	 in	 the	 2000s,	 all	 the
statisticians	 started	calling	 themselves	data	 scientists,	and	actually	got	probably	a	big
pay	bump	in	the	process.

Basically,	 that	 comes	around	a	 time	when	 specialized	programming	 tools	 emerged	 for
working	with	data.	 It	could	be	large,	could	be	small,	but	often	large	data,	and	applying
statistical	methods,	programming,	other	analytical	methods	to	data.	Data	science	hasn't
really	been	around	that	long.

You	can	say	it's	a	discipline	where	people	apply	programming,	statistics,	math,	and	other
techniques	to	gain	insights	from	data,	 I	guess,	would	be	the	fancier	definition	from	it.	 I
will	add	one	thing	to	that,	which	is	that	I	think	that	there's	a	really	important	part	of	data
science	that	is	sometimes	overlooked,	which	is	that	of	a	data	scientist,	it	really	gets	a	lot
out	of	the	context	and	understanding	where	data	comes	from,	what	happened	to	it	along
the	way,	and	also	making	connections	between	things	you	know	about	the	world,	things
about	 history,	 about	 business,	 about	 how	 people	 interact,	 different	 kinds	 of	 domains,
applying	that	to	an	understanding	of	data.	I	come	from	the	humanities,	so	I	do	think	that
the	data	has	a	little	bit	of	a	humanistic	element	that	sometimes	we	don't	talk	that	much
about,	 but	 it's	 actually	 one	 of	 the	 key	 elements	 of	 being	 a	 good	data	 scientist	 is	 that
qualitative	element	as	well	as	a	quantitative	element.

Data	scientists	do	very	different	things	on	a	daily	basis.	Some	data	scientists	are	more
like	engineers,	and	they	create	what	are	called	data	pipelines,	but	basically	flows	from
some	kind	of	business	process	or	other	process	that	generates	data	into	a	format	form
and	an	application	where	you	can	analyze	it.	That's	one	thing	you	could	be	doing.

Some	data	scientists	are	really	communicators,	and	others	are	very	mathematical.	You
might	just	work	with	models,	which	is	basically	a	fancy	way	of	saying	simplifications	of
the	world	that	allow	you	to	answer	questions	about	data	and	transform	data	into	a	more

simplified	 form.	There's	 lots	of	different	 types	of	 jobs	you	can	have	as	a	data	scientist
and	a	lot	of	different	ways,	things	you	can	call	yourself	within	data	science	as	well.

(9:04	-	11:09)

Now,	what	are	we	going	to	be	doing	today?	Today,	we're	going	to	be	continuing	to	use
Python,	which	we	were	introduced	to	last	week.	We'll	continue	to	learn	IPython,	which	is
a	specific	way	of	interacting	with	Python	through	the	command	line.	It's	a	fancy	Python
interpreter,	basically	a	program	that	allows	you	to	have	a	conversation	with	Python.

It's	a	fancy	version	of	that.	We're	doing	all	of	that	in	our	Anaconda	distribution.	Anaconda
is	 the	 way	 that	 IPython	 comes	 to	 us	 by	 installing	 this	 Anaconda	 distribution,	 which	 is
Python	with	a	bunch	of	extra	stuff	included.

I	know	that's	a	 lot	of	names	that	all	have	Python	and	stuff	 in	them,	but	we're	going	to
continue	to	use	all	 that	 tools,	but	we're	going	to	be	adding	something,	and	that	 is	 the
Pandas	library.	We	learned	last	week	that	a	library	is	basically	a	big	pile	of	code	that	you
can	pull	into	your	code,	and	the	Python-specific	term,	the	technical	term	for	a	library	is	a
module,	and	we	will	be	using	the	Pandas	library,	Pandas	module.	People	always	ask	what
Pandas	stands	for.

It's	more	of	a	historical	name.	It's	a	cool	name.	It's	a	cute	name.

We	all	like	pandas.	We	all	like	bears.	Maybe	some	of	us	don't,	but	I	do.

But	the	name	basically	is	short	for	panel	data,	or	panel	datas,	I	guess,	and	panel	data	is
a	type	of	data	related	to	a	series	of	data	snapshots	in	time,	so	another	kind	of	connected
to	something	that	we	call	time	series	data.	For	example,	stock	market	data	is	often	time
series	data,	and	that's	what	Pandas	was	originally	designed	for,	was	specifically	for	time
series,	so	data	that	is	mapped	over	time,	but	it's	now	used	for	a	much	wider	variety	of
things,	so	that's	why	I	say	it's	a	bit	of	a	historical	name.	It	doesn't	mean	quite	as	much,
and	we	work	with	a	lot	of	things	that	aren't	panel	data	in	Pandas.

(11:11	-	12:35)

Cool.	So,	let's	kind	of	just	jump	in,	and	the	first	thing	we're	going	to	do	is,	you	know,	the
end	of	the	last	workshop,	we	learned	about	importing	libraries.	We	imported	the	random
library,	and	we	got	a	little	work	done	with	the	random	library,	which	allowed	us	to,	you
can	do	things	like	generate	random	numbers,	pull	random	items	out	of	a	list.

However,	we	now	are	going	to	import	a	new	library,	which	is	our	Pandas	library,	so	I'm
going	to	start	with	sharing	my	screen,	and	it	occurs	to	me,	Sarah,	if	you	wanted	to,	you
know,	back	us	up	by	recording	 locally,	you	know,	 if	you	want	to	ask	 for	permission	 for
that,	that	would	be	fine,	too.	We	should	be	recording.	Oh,	yeah,	so	I'm	trying	to	record
through	QuickTime	player,	because	I'm	worried	that,	yeah,	that	two	Zoom	recordings	are

going	to	clash	with	each	other	in	the	middle,	so	hopefully...	No,	no,	it's	not.

If	you're	doing	it	one	way,	don't	do	it	another	way,	then	thank	you.	Yeah,	yeah,	yeah,	so
we'll	hope	for	the	best.	Yeah,	yeah,	I	think	we're	going	to	be	good.

All	 right,	 so	 let's	 go	ahead	and	 share	 that	 screen.	 I'm	going	 to	make	 sure	 I	 share	 the
sound,	which	is	the	most	important	thing.	Share	sound	and	share.

(12:37	-	13:16)

Screen.	 "You	 have	 started	 screen	 share."	Okay,	 that's	my	 notes,	 and	we	 are	 going	 to
start	by	opening...	"Start	window.

Participants	can	now"...	The...	We're	going	to	start	by	opening	the	Anaconda	prompt,	so
that	 is	 the	command	 line	application	that	comes	with	Anaconda,	and	 it	has	a	 few	 little
extra	 things	 added	 to	 it,	 such	 as	 IPython,	 so	 let's	 start	 typing	 "Anaconda.	 Anaconda
prompt	left"...	It	came	up	right	away	for	me,	but	you	may	need	to	type	a	little	more,	so
you	want	to	type	Anaconda	space	P,	and	then	hit	enter	when	that	pops	up.	Remember,
you	don't	want	Anaconda	Navigator.

(13:16	-	13:49)

Okay,	you	want	Anaconda	prompt.	All	right.	Now,	once	you're	in	the	Anaconda	prompt,
and	I	will	expand	it,	and	I	will	also	get	rid	of...	I	think	I	found	a	way	to	get	rid	of	that	little
thing,	 so	 you	 can	 just	 have	 the	whole	 screen	 be	 our	 command	 line	 environment,	 and
also,	you	can	hear	in	the	background,	I	already	have	NVDA	running	with	a	little	bit	of	a
nicer	voice,	just	like	I	switched	to	last	week,	okay?	So,	let's	do...	Start	by...	We're	typing
IPython.

(13:49	-	15:04)

It's	all	lowercase	to	get	into	our	IPython	environment,	just	like	we	did	last	week.	IPython,
I,	and	then	the	Python,	like	the	large	snake.	"Python	3.8.8	left..."	Talking,	but	we	hear	the
version	 is	 the	first	 thing	that	we	get	when	we	start	running	this	 IPython	process,	and	 I
am	 also...	 This	 is	 too	 much	 for	 me,	 so	 I'm	 going	 to	 first	 start	 by	 clearing	 the	 screen,
which	 is	 to	hold	down	the	control	and	press	L.	Oh,	and	someone	was	asking	 that	 they
don't	hear	anything	when	the	screen	clears,	but	I	guess	now	that	I'm	thinking	about	it,	I
don't	hear	anything	either.

What	I	do	hear	is	the	prompt.	So,	that	is	the	in,	and	then	a	number.	So,	we	talked	about
that	last	week,	but	basically,	that	tells	you,	hey,	we're	ready	to	type.

So,	I	probably	won't	do	so	much	reviewing	of	that	kind	of	work,	but	remember	that	the
first	workshop	has	a	lot	of	detail	on	reviewing...	We're	typing	stuff	in,	reviewing	output,
and	parsing	the	data	by	listening.	So,	when	we	get	output,	then	we	want	to	make	sure

that	we're	listening	for	the	right	things.	So,	let's	first	start	by	importing	Pandas.

(15:05	-	16:35)

"I-M-P-O-R-T,	space.	P-A-N-D-A-S,	space."	And	 I	don't	seem	to	have	word	 review	on,	so
I'm	going	to	try	to	turn	that	on.

Speak	typed	words	on.	There	we	go.	"I-M-P-O-R-T,	import."

P-A-N-D-A-S,	Pandas."	Okay,	import	Pandas.	I	did	the	space,	just	hear	it.	Import	Pandas.
So,	now	we	have	Pandas	imported.	If	you	type	Pandas	by	itself,	you	will	get	back,	it'll	just
say	this	is	a	module,	a	module	object.

"P-A-N-D-A-S,	out	 left	bracket	 to	right	bracket,	colon,	 less	module	Pandas	 from	C	colon
backslash."	 Less	 module	 Pandas,	 that	 means	 the	 less	 than	 sign,	 and	 then	 it	 gives	 us
some	information	on	the	object.	So,	when	you	get	 information	on	objects,	they	tend	to
be	wrapped	in	a	less	than	and	a	greater	than	sign.

So,	now	we're	going	to	be	using	this	Pandas	module	pretty	extensively	today.	So,	 let's
get	 started	 by	 talking	 first	 about	 thinking	 about	 one-dimensional	 data	 and	 two-
dimensional	data,	and	then	I'll	show	you	how	to	create	one	and	two-dimensional	data	in
Pandas,	okay?	So,	what	 is	one-dimensional,	what	are	dimensions	 in	data?	What	 is	one-
dimensional	data,	two-dimensional	data,	what	other	kinds	of	dimensional	data,	and	then
also	zero-dimensional	data,	okay?	It	sounds	fancy,	but	it's	not	really	as	complicated	as	it
sounds.	So,	 imagine	you	have	a	 list,	and	I	want	to	use	as	my	example	here	something
that	is	consistent.

(16:36	-	17:54)

So,	let	me	make	sure	that	the	list	is	the	same	as	it	is	in	our	code.	So,	I	think	...	Yeah,	let's
use	10,	5,	and	8	since	that's	what	we	use	in	the	code,	okay?	So,	imagine	you	have	a	list
that	has	three	items,	10,	the	number	10,	5,	the	number	5,	and	8,	the	number	8,	okay?
And	you	can	sort	of,	in	your	mind,	imagine	this,	okay?	And	I'm	not	going	to	use	the	word
visualize	here,	right,	because	it's	not	visual,	it's	spatial.	So,	all	the	data	stuff	we're	going
to	be	doing	 today	 is	 not	 visual,	 except	 incidentally,	 because	we're	using	 this	 program
that	was	designed	by,	you	know,	people	who	do	things	visually.

It's	spatial,	okay?	So,	 there's,	you	know,	whether	or	not	you're	doing	 this	visually,	you
have	 left,	 right,	up,	down,	 forward,	and	back,	okay?	Different	dimensions,	okay?	So,	 in
your	mind,	I'd	like	you	to	imagine	that	we	have	a	line.	So,	we	have	a	left	item,	a	middle
item,	and	a	right	item.	And	I	don't	know	however	it	works	in	your	mind.

My	 mind	 works	 different	 from	 your	 mind,	 but	 imagine	 that,	 okay?	 You	 can	 use	 your
hands	or	whatever	if	you	want	to.	You've	got	your	hand,	your	head,	and	your	other	hand.
And	imagine,	now	I've	already	forgotten	the	numbers,	but	they	are	10,	5,	and	8,	okay?

So,	we	have	10	on	the	left,	5	in	the	middle,	and	8	on	the	right.

(17:54	-	19:37)

Now,	that	basically	is,	you	could	draw	a	line,	okay?	And	place	each	of	those	items	on	the
line.	 And	 that	 basically	 is	 one-dimensional	 data,	 okay?	 So,	 and	 the	 characteristic,	 the
way	you	know	it's	one-dimensional	data	 is	that	we	can	describe	where	something	 is	 in
that	 line	with	a	single	number,	okay?	So,	we	could	say,	 remember,	we	always	start	at
counting	and	programming	from	zero.	Zero	is	the	item	on	the	left.

One	is	the	item	in	the	middle,	10,	5,	and	8.	10	is	the	item	on	the	left.	5	is	the	item	in	the
middle.	8	is	the	item	on	the	right,	okay?	So,	we	think	of	that	as	like	an	address.

We're	going	to	use	a	fancier	word	in	a	minute,	but	you	can	think	about,	it's	kind	of	the
location	or	the	address	of	the	object,	okay?	And	what	we	use	in	programming	is,	in	this
Panda	 specifically,	we'll	 use	 this	word	 index	 to	 describe	 the	 location	 of	 an	 object	 in	 a
data	set,	okay?	But	in	a	one-dimensional	data	set,	you	can	describe	where	something	is
just	with	one	number,	okay?	 It	 can	be	a	big	number,	 small	number,	whatever,	but	 it's
just	 one	 number,	 okay?	 So,	 let's	 create	 a,	well,	 let's,	 I'll	 hold,	 I'll	 quickly	 just	 describe
what	two-dimensional	data	is.	And	then	we'll,	we're	going	to	go	back	and	work	with	one-
dimensional	 data.	 But	 two-dimensional	 data	 requires	 that	 you	 have	 two	 numbers
describing	where	an	item	is	in	the	data	set.

So,	if	we	had	a	list,	so,	imagine	we	have	two	lists,	and	I	won't	do,	I	won't	create	this	in
Python	because	we're	going	to	be	working	with	this	in	a	minute	anyway.	We'll	talk	about
it	 again.	 But	 imagine	 in	 your	 mind	 now,	 you	 have	 a	 list,	 okay?	 Or	 a	 line	 like	 we	 did
before.

(19:37	-	23:48)

Now,	imagine	that	instead	of	10,	5,	and	8,	we	now	had	each	of	those	items	be	another
list,	each	with	three	items,	okay?	So,	we	could,	it	doesn't	matter	what	the	items	are,	but
imagine	that	it's	three	months.	So,	June,	July,	August	is	one	of	the	items.	Then	we	have
numbers	10,	5,	and	8.	And	then	we	have,	say,	another	set	of	numbers,	smaller	numbers,
1,	2,	and	1,	okay?	And	we'll,	we're	going	to	create	a	data	set	like	that	in	a	minute.

But	we're,	let's	not	talk	about	what	those	represent	in	a	minute.	We're,	it's	going	to	be	a
simple	budget,	basically.	But	now,	we	have	data	existing	 in	 two	dimensions,	okay?	So,
we	have,	you	can	imagine	a	line	going	from	left	to	right.

And	now	you	can	also	imagine	in	that	line,	things	are	going	up	and	down,	okay?	So,	the
first	address	tells	you	where	it	is	in	the	left	and	the	right.	And	that	is,	so,	we	could	say
zero,	that's	the	first	list.	And	then	we	give	another	number.

We	could	say,	then	we	have	that	first	list	is	June,	July,	August.	That	zero	item	list	is	June,

July,	August.	Then	we	could	say	one,	that	would	be	July,	okay?	So,	we	can	now	describe
in	this	list	of	lists	that	we've	created	where,	where	items	are.

But	now	we	need	two	numbers,	okay?	And	that's	what	we	call	two-dimensional	data.	 If
you	can	describe	where	an	item	is	in	a	data	set	with	two	numbers,	it's	two-dimensional
data.	And	then	there's	also	zeroth-dimensional	data.

It's	not	very	useful	to	talk	about.	But	any	item	that	isn't	a	list	or	a	sequence	of	items	is
one,	is	zero-dimensional	data,	okay?	So,	for	example,	if	I	create	a	string,	like	we	did	last
week,	quote,	"H-E-L-L-O,"	hello.	So,	I	created	a	string	called	hello,	okay?	Or	with	the	text
hello	in	it.

And	that	is	zero-dimensional	data,	because	there's	no	dimensions	to	it.	It's	just	a	point	in
space,	okay?	It	doesn't	even	mean	anything	to	describe	its	location.	Or	you	could	pick	an
arbitrary	number	to	describe	its	location,	because	it's	not,	it	doesn't	exist	in	space,	okay?
It	 doesn't	 have	 a	 spatial	 dimension,	 okay?	 And	 then	 the	 other,	 there's	 other	 kinds	 of
dimensions	that	are	a	little	more	abstract.

But	basically,	imagine,	you	know,	we	took	our	line	and	we	added	lists	to	it,	right?	Now,
imagine	if	we	took	every	item	in	those	secondary	lists,	in	the	list	of	months	and	the	two
lists	of	numbers.	So,	imagine	that	we	took	those	items,	and	then	we	replaced	those	with
lists.	And	now	we	would	have	three-dimensional	data,	okay?	And	you	could	then,	if	you
wanted	to	imagine	it	in	your	mind,	you	would	maybe	use	forward	and	back.

That's	 another	 dimension.	 Because	 in	 our	 physical	 world,	 we	 have	 three	 dimensions.
Then	you	could	add	more	dimensions,	because	you	could	keep	replacing	items	with	lists.

So,	you	can	actually	have	an	arbitrary	number	of	dimensions,	but	after	a	point,	 it's	not
easy	to	map	it	onto	our	physical	world.	So,	it	becomes	harder	to	imagine	it	in	that	three-
dimensional	space.	But	it	is	possible	to	have	those,	and	they're	actually	very	useful.

And	 if	 you	 hear	 a	 lot	 about	 machine	 learning	 these	 days,	 and	 this	 is	 a	 gross
oversimplification,	but	basically	what	all	those	models	are,	they're	basically	lists	of	lists
of	lists	of	lists.	They're	very	complex.	If	you	look	at	a	neural	network,	it's	basically	these
complicated	 lists	of	 lists	of	 lists	of	 lists,	okay?	That's	a	gross	oversimplification,	but	 it's
functionally	what	they	are,	okay?	So,	they	actually	are	very	useful.

We're	 not	 going	 to	 get	 into	 those	 n	 numbers.	 We're	 going	 to	 use	 one	 and	 two-
dimensional	data	in	this	workshop	series.	So,	let's	get	into	it.

I'm	going	to	show	you	how	to	work	first	with	one-dimensional	data	and	then	we'll	move
on	 to	 two-dimensional	 data	where	 things	get	 really	 fancy.	But	 you'll	 notice	we	 switch.
We're	not	going	to	do	one-dimensional	data	and	move	on.

Once	we	learn	about	one-dimensional	data,	we're	going	to	constantly	be	coming	back	to

this	 information	because	we're	constantly	going	 to	be	 taking	our	 two-dimensional	data
and	making	 it	one-dimensional,	okay?	And	pulling	out	a	one-dimensional	element	 from
the	two-dimensional	data	set,	okay?	So,	that's	how	we	work	in	PEMD.	So,	let's	go	ahead
and	 create	 this	 list,	 which	 is	 going	 to	 be	 a	 budget	 list.	 And	 I	 want	 to	 use	 the	 same
numbers.

(23:48	-	24:27)

In	 left	 bracket,	 I	 search.	 Budget	 equals	 left	 bracket	 10,	 10,	 5,	 15,	 15	 right	 bracket.
Budget	equals	left	bracket	10,	10,	5,	15,	15	right	bracket.

Okay.	I	just	want	to	make	sure	things	line	up	with	the	curriculum.	Yeah.

I	 just	remember	that	 last	time	you	made	it	a	friendlier	voice	and	slowed	it	down.	Oh,	 I
thought	this	was	the	friendlier	voice.	No,	this	is	your	normal	voice.

"NVDA	 menu,	 preferences,	 tool	 submenu,	 code	 factory	 submenu,	 help	 submenu	 H.
Configuration	profiles	dialog.	Programming.	Recording.

(24:28	-	27:31)

Nice	 line	sounding	left	paren.	Editing.	Manual	right	paren."	Let's	try	this	and	see	if	you
hear	a	difference.	 I	 think	this	 is	 the	nice	voice.	 I	 think	this	 is	your	normal	one,	or	your
preferred	one.

This	is	my	preferred,	so	it's	actually.	Okay.	I'll	slow	it	down	for	people.

Yeah.	That	is	slower	than	I	do	do	it,	but	I	guess	I'm	not.	Okay.

I	think	it's	audio,	but	I	want	to	prefer	a	voice.	Yeah.	"Audio	output	device,	colon,	combo
box,	 Microsoft	 sound	 mapper,	 colab,	 audio	 ducking	 mode,	 colon,	 combo,	 volume	 of
NVDA,	volume	of	NVDA,	okay,	button,	audio,	audio,	audio,	audio,	three	of	speech,	two	of
15,	speech	property	page,	change,	voice,	colon,	combo,	rate,	colon,	slider	60	alt	plus	59,
54,	52,	50."

How's	50,	do	you	think?	Did	I	get	to	make	it	even	slower?	Let's	do	48.	"48."	That	sounds
pretty	slow	to	me.

Is	that	good?	Yeah.	When	you	listen	to	robots	all	day,	maybe	your	idea	of	what	is	a	fast
or	 slow	 voice	 gets	 a	 little	 scared.	 I	 do	 know	 people	 who	 listen	 faster	 than	 I	 do,	 but	 I
wouldn't	even	say	I'm	that	much	of	a	speed	demon.

It	is	easier	to	follow	along	when	the	voice	is	a	little	slower,	so	thank	you	for	that.	Okay.
So	let's	go	ahead	and	create	our	budget.

I	think	it	was	Emacs,	budget	equals	left	bracket	10,	10,	5,	15,	15	right	bracket.	10,	10,	5,

15,	 and	 15.	 Sorry,	 that	 voice	 is	 going	 to	 be	 a	 little	 faster	 because	 that's	 a	 different
program,	and	that's	really	just	my	own	notes.

So	let's	go	ahead	and	create	budget.	"B-U-D-G-E-T,	budget	equals	left	bracket	10,	10,	5,
15,	15".	I	will	review	this.

So	 it's	 going	 to	 be	 budget	 equals	 space	 open	 square	 bracket,	 and	 then	 write	 the
numbers	10,	10,	5,	15,	and	15.	Okay.	So	budget	equals	in	left	bracket	5	right	bracket.

And	 you	 remember,	 you	 hear	 the	 in,	 and	 that	 basically	 means	 there's	 no	 output.	 It
skipped	the	output.	So	when	you	assign	a	variable,	you	don't	hear	output.

(27:31	-	28:29)

And	we	can	get	our	budget	back	by	typing	budget	by	itself.	That's	a	technique	we	use	all
the	time.	"out	left	bracket	5	right	bracket	colon	left	bracket	10,	10,	5,	15,	15."	10,	10,	5,
15,	and	15.	Okay.	So	that's	our	budget.

Now,	remember	in	regular	Python,	we	can	do	things	like	use	what's	called	slicing	to	pull
out	specific	items.	So	basically,	the	syntax	is	this,	and	we're	going	to	do	similar	things	in
this	workshop.	Type	the	budget	variable.	"B-U-D-G-E-T,	budget."	And	we	can	type	open
square	bracket	and	then	give	it	a	number.

"out	left	bracket	6	right	bracket	colon	10."	10.	So	10	is	our	output.

We	asked	for	the	first	item.	It	was	budget,	open	square	bracket,	0,	close	square	bracket.
So	Python	gives	some	functionality	with	lists.

(28:30	-	28:34)

And	these	are	one-dimensional	data	types.	Okay.	Lists	are	one-dimensional	data	types.

(28:34	-	29:05)

But	what	we're	going	to	do	is	we're	going	to	create	a	new	data	type,	which	is	a	it's	going
to	be	called	a	series.	Okay.	So	the	series	is	basically	you	can	think	of	it	as	a	really	fancy
list.

Okay.	That	lets	us	do	all	sorts	of	things.	So	let's	go	ahead	and	load	in	our	budget	data
type	or	our	budget	series.

Okay.	 Now,	 I	 am	 going	 to	 use	 a	 very	 short	 variable	 name	 here,	 and	 I'll	 give	 an
explanation.	So	far,	I've	tried	to	use	very	descriptive	variable	names.

(29:05	-	30:53)

You	don't	see	me	doing	X	equals	this,	Y	equals	this,	only	very	rarely.	And	I	recommend

keeping	to	that.	But	I'm	going	to	use	a	short	variable	name	here,	and	then	I'm	going	to
kind	of	tell	you	why	I	chose	that.

Okay.	So	I'm	going	to	say	S,	like	the	letter	S.	S	equals	space.	And	then	we	want	to	use
pandas.

Now,	then	do	a	dot.	Got	a	reaction	there.	And	there's	our	dot.

So	 now,	 so	 far,	 we	 have	 S	 space	 equals	 space	 pandas	 dot.	 And	 now,	 let's	 you	 type
capital	S	series,	and	I'll	explain	that	part	too.	And	you	heard	that	little	blink,	you	know,
that	little	beep.

That's	 how	 I	 have	 it	 set	 to	 get	 the	 capital	 letters.	 So	 when	 you	 hear	 that	 little	 beep,
you're	hearing	capitals.	Then	open	parenthesis,	and	then	give	our	budget	variable	inside
the	parenthesis.

So	B,	U,	D.	And	I'm	going	to	let	IPython	complete	it	for	us	by	pressing	tab.	Remember,
that's	something	we	learned	in	the	first	one.	So	I	type	B,	U,	D.	Yes.

So	 it	added	B,	U,	D.	 It	added	G,	E,	T	 for	me.	And	 then	 I'm	closing	 the	parenthesis.	So
what	I	have	here	is	S	space	equals	space	pandas,	the	library,	dot,	capital	S,	series,	S,	E,
R,	I,	E,	S.	Okay.

Open	parenthesis,	and	then	our	variable	name,	budget,	close	parenthesis.	Okay.	It	takes
a	minute.

(30:54	-	31:03)

Computers.	Okay.	So	it	assigned	the	variable,	so	we	don't	get	any	output.

(31:04	-	36:08)

But	 we	 can	 get	 an	 idea	 of	 what	 the	 series	 representation	 is.	 Remember,	 the
representation	is	a	fancy	word	for	what	the	output	is	like.	Okay.

We	call	that	a	representation.	So	when	we	type	a	variable	by	itself,	what	we're	getting
back	 is	 the	 representation.	So	we're	going	 to	 take	a	 look	at	 this	 representation	of	 the
series	in	a	second.

First,	 let	me	 just	explain	a	 few	 little	 things.	So	why	did	we	use	a	short	variable	name?
This	 is	 another	unsatisfying	data	 science-y	answer.	 There	 is	 a	 convention,	 an	 informal
convention	in	data	science	and	Python	that	there's	certain	variable	names	that	are	used
by	conventions.

So	 if	 you	 only	 have	 one	 series,	 people	 often	 call	 it	 S.	 Okay.	 And	 there's	 another
convention	that's	similar	to	that	with	data	frames,	which	we'll	talk	about	in	a	minute,	but

we	will	cross	that	bridge	when	we	come	to	it.	There's	also	a	convention	to	shorten	many
of	the	library	names.

So	often	you'll	see	pandas	called,	if	you	follow	a	tutorial,	you'll	see	pandas	being	called
PD.	Okay.	So	there's	a	way	to	shorten	the	library	name,	but	I	think	it	confuses	the	issue	a
little	bit.

So	we're	just	going	to	use	the	full	pandas	name.	But	if	you	see	PD	in	a	tutorial,	they're
talking	about	pandas.	Okay.

These	are	data	science	conventions.	I	didn't	make	them	up.	I	would	also	say	anytime	you
have	more	 than	 one	 series,	 go	 ahead	 and	 use	 a	 descriptive	 name,	 because	 once	 you
start	doing	S1,	S2,	S3,	then	you're	going	to	kind	of	get	yourself	confused.

Okay.	So,	but	I	want	you	to	know	about	this	convention,	so	I'm	going	to	use	it.	All	right.

So	the	other	thing	I	want	to	explain	is	why	is	the	series	in	this	line	up	here	capitalized?
And	the	short	version	of	 that	 is	 that	 it	 is	an	object	 that	we're	using	 in	Python,	and	the
technical	word	would	be	 it's	a	class	 that	we're	 importing.	We're	using	 the	series	class,
which	we're	not	going	to	get	 into.	But	basically	 it's	not	a	 function	that	we're	 importing
there.

It's	 another	 kind	 of	 object	 that	we're	 importing	 from	pandas	 library.	 You	 can	basically
just	figure,	hey,	you	know,	it's	pretty	much	the	function	for	now.	Later	you	might	learn
why	the	class	is	and	what	these	kinds	of	objects	and	stuff	are	for	now.

Just	think	of	it	as	a	way	to	make	a	series	object.	It's	almost	like	a	little	factory.	That's	the
short	way	of	thinking	about	a	class.

It's	a	prototype	for	making	other	objects	with.	Okay.	So	S	equals	pandas.series,	and	we
give	it	our	budget,	pass	the	budget	in,	and	now	we	have	our	series	object.

So	let's	type	S	by	itself.	Press	enter.	S	in	left	bracket,	eight	right	"bracket,	colon,	S.	Out
left	bracket,	eight	right	bracket,	colon.

Zero	ten.	One	ten.	Two	five.

Three	fifteen.	Four	fifteen.	dtype	colon.

In	left	bracket,	nine	right	bracket."	I	kind	of	like	that	that	was	a	bit	slower,	because	it	can
be	difficult	to	parse	some	of	this	output	sometimes,	and	when	you're	hearing	it	for	the
first	time,	it's	confusing.	But	what	you	heard	was	zero	ten,	then	a	pause	for	a	new	line,
one	ten,	pause	for	a	new	line,	two	five,	pause	for	a	new	line,	three	fifteen,	pause	for	a
new	line,	four	fifteen,	pause	for	a	new	line.

And	 then	 the	 last	 line	 said	 D	 type.	 It	 said	 it	 some	 weird	 way.	 It	 was	 like	 D	 type	 or

something.

But	it	said	D	type	for	data	type,	and	then	it	said	int64.	So	that's	telling	us	the	data	that
we	have	in	the	series	is	basically	it's	saying	it's	integers.	Okay.

And	this	is	the	format	of	a	series	representation	that	you	have	two	columns	of	numbers,
one	on	the	left	spatially,	one	on	the	right	spatially.	The	left	column,	let's	talk	about	the
right	column	first.	The	right	column	are	the	values,	and	that's	the	technical	term.

They're	the	values	that	we	had	in	the	list.	Okay.	And	value	is	a	word	for	the	actual	data.

Okay.	 So	 when	 you're	 distinguishing	 the	 actual	 data	 from	 something	 else,	 like,	 for
example,	a	 label	you're	putting	on	the	data	or	a	variable	name	or	something	 like	that,
then	we	say	value	to	mean	the	actual	data.	And	in	this	case,	the	actual	data	is	the	stuff
that	we	put	in	budget.

Okay.	So	on	the	right	column,	so	the	second	number	in	each	line,	when	you're	hearing	it,
you	 know,	 line	 by	 line,	 is	 the	 value.	 The	 left	 number	 is	 the	 index,	 and	 the	 index	 is
basically	it's	a	label	for	each	row	of	the	data.

Okay.	 By	 default,	 the	 label	 or	 the	 index,	 label	 is	 not	 the	 technical	 term,	 but	 it's	 an
accurate	way	of	describing	 it.	The	 index	on	 the	 left	 is	a	number	 that,	an	 incrementing
number	from	zero	up	to	some	other	number.

Okay.	So	it's	basically	 just	a,	 it's	the	same	as	slicing.	When	we	extract	something	from
the	list,	it	starts	at	zero,	goes	to	one,	two,	three,	four,	and	so	on	until	the	end	of	the	data
set.

(36:09	-	37:13)

Okay.	That's	 the	default	 index,	but	we're	actually	going	 to	work	with	 that	 in	a	minute.
Okay.

Anything	else	 to	know	about	 this	 representation?	And,	oh,	 the	other	 thing	 I	wanted	 to
say	is	that	what	we	call	that	in	programming,	when	a	number	just	increments	like	that,
or	we	want	to	create	something	like	that,	we	call	that	a	range.	Okay.	So	if	I	say,	oh,	it's	a
range,	I	just	mean	it's	numbers	going	up.

Okay.	And	there	are	fancier	ranges	where	numbers	go	up	by	two	or	something	like	that,
but	mostly	they	go	up	by	one.	Okay.

So,	and	we'll,	we'll	return	to	that	later.	Okay.	So	it's	a	range,	the	index	is	a	range	from
zero	to	four,	and	the	other,	the	right	column	is	our	actual	values.

Okay.	So	now	we	actually	get	into	some	pretty	cool	stuff	here.	This	is	actually	pretty	neat
stuff.

So	I've	kind	of	explained	a	lot	of,	you	know,	procedural	stuff,	but	now	let's	do	some	cool
stuff.	So	let's	start	by	doing	S,	and	we're	going	to	use	a	method	on	the,	this	series	object
that	we	have.	So	S	dot.

(37:15	-	38:45)

It	takes	a	while	for	it	to	say	dot.	S	dot.	And	let's	use	the	mean	method,	M-E-A-N.	"M-E-A-
N."	Open	parenthesis,	close	parenthesis.	Mean.

Right	 parenthesis.	 Skip	 saying	 the	 left	 parenthesis	 there,	 but	 it's	 S	 dot	 mean,	 left
parenthesis,	right	parenthesis.	We're	not	putting	anything	in	there.

Usually	when	you	don't	pass	anything	 into	a	method	 like	 that,	 it's	going	to	operate	on
the,	the	object	that	the	method	is	contained,	contained	inside.	So	if	we	say	S	dot	mean
and	 run	 that,	 then	 it's	 going	 to	 operate	 on	 S	 probably.	 Not	 all	 of	 us,	 but	 mostly,	 but
usually.

Okay.	So	let's	run	that.	"Out	left	bracket,	nine	right	bracket,	colon	11.0."	So	what	was	the
mean?	 Maybe	 you	 remember	 from	 school,	 maybe	 you	 were	 mathematical,	 so	 this	 is
obvious	to	you.

The	mean	is	the	average.	Okay.	The	average	is	you	take	all	the	numbers,	the	sum	of	all
the	 numbers,	 you	 sum	 them	 all	 up,	 you	 add	 all	 the	 numbers	 together,	 and	 then	 you
divide	 by	 the	 number	 of	 numbers	 or	 the,	 you	 know,	 so	 in	 this	 case,	 you	 add	 up,	 you
know,	10,	10,	that's	20,	25,	15	and	15	is	30.

That's	55.	And	then	we	divide	by	five,	we	get	11.	Okay.

That's	the	average.	And	the	average	is	a	very	useful	number.	We'll	be	using	this	a	lot.

Why	 isn't	 it	 S	 dot	 average?	Well,	 it's	 just,	 that's	 just	 a	 decision	 they	made	when	 they
created	this	library.	Okay.	Remember	all	of	this	stuff	is	created	by	people.

(38:45	-	42:42)

So	 they	 were	 made	 just	 different	 kinds	 of	 decisions.	 Sometimes	 they	 changed	 those
decisions	and	then	the	 language	changed.	So	hopefully	not	 too	often,	but	so	that's,	so
that	is	one	method	that	we	have	inside	our	series	object	and	it	allows	us	to	get	the	mean
of	all	the	items	in	there.

And	 so	 let's	 do	 a	 couple	 of	 others	 that	 are	 along	 these	 same	 lines.	 So	 let's	 do	 S	 dot
median.	"S	S	M	E	D	I	A	N"	dot	median,	open	parenthesis,	close	parenthesis.	I'm	going	to
type	a	 little	 faster	 here.	 Just	 S	 dot	median,	 open	parenthesis,	 close	 parenthesis.	 10.0.
Okay.

So	 the	 median	 is	 the	 middlemost	 number.	 So	 if	 you	 sort	 all	 the	 items	 from	 least	 to

greatest,	and	then	you	pick	the	middlest	item,	it	would	be	10.	Okay.

If	 there's	an	even	number	of	 items,	then	you'll	get	the	average	of	 the	two	middlemost
items.	Okay.	So	if	we	had	six	 items,	maybe	we	would	have	got	the	average	of	the	two
items	in	the	middle.

Okay.	Now	this	 is	not	 that	 intuitive,	 right?	Because	our	 list	 is	10,	10,	5,	15,	15.	You're
like,	oh,	it's	in	the	middle	of	number	five.

No,	it	sorts	first.	And	in	fact,	there's	also	a	very	useful	method	to	sort	our	values.	So	let's
do	S	dot	S	S	dot,	it	takes	a	while	to	do	that,	sort	underscore	values.

And	I'm	going	to	try	to	fill	it	in	with	tab.	So	it's	S	dot	sort	underscore	values.	Okay.

And	I	do	encourage	you	to	use	that	tab.	And	it	does	take	a	while	for	it	to	finish	it,	filling	it
in.	But	what	it	does,	it	gives	you	some	peace	of	mind	that	you're	not	going	to	do	a	typo.

You	 type	a	 little	 in,	 and	 if	 it	 fills	 it	 in	 for	 you,	 then	probably	you're	on	 the	 right	 track.
Okay.	So	I	do	recommend	using	that	tab	a	lot.

So	 it's	 S	 dot	 sort	 underscore	 values,	 open	 parenthesis,	 closed	 parenthesis.	 And
sometimes	it	gets	that.	I'm	going	to	stop	it	and	explain	what	we're	hearing.

So	we're	getting	our	series,	but	now	the	items	have	been	sorted	into	a	new	order.	And	it
kept	 the	old	 index,	which	 is	 the	 range	 from	zero	 to	 four.	And	now,	you	know,	 the	 first
item	used	to	was	the	third	item,	it's	two,	is	five.

So	 five	was	the	 lowest,	 it	gets	moved	to	be	to	 the	beginning	 item.	Okay.	So	the	 index
tends	to	stay	the	same	when	we	run	things	like	this.

Okay.	So	we	kind	of	get	the	original	position	of	these	items	rather	than	the	new	position.
Okay.

So	 the	 index	doesn't	automatically	update.	That's	actually	usually	good.	And	then	now
we	have	a	series,	it	goes	from	five,	10,	10,	15,	15.

Okay.	 So	 it's	 sorted	 from	 least	 to	 greatest.	 That's	 what	 it	 does	 by	 default,	 least	 to
greatest.

Now,	if	you	kind	of	don't	like	how	Pandas	is	printing	so	much	out	to	us,	we	can	also	do	S
dot	 values	 and	 only	 get	 the	 values.	We	 don't	 hear	 the	 index.	Now,	 the	 index	 is	 often
useful	to	hear,	but	sometimes	it's	not.

So	we	can	just	do	S	dot	values.	S	dot	values,	no	parentheses.	"Out	left	bracket,	12	right
bracket,	colon,	array	left,	left	bracket,	10,	10,	5,	15,	15."

So	we	 just	 got	 the	 values	 from	 the	 original	 list,	 not	 the	 sorted.	 You'll	 notice	 that	 that

didn't	update	our	variable	when	we	sorted	the	variable.	We	would	have	to	overwrite	the
variable	if	we	wanted	to	update	the	variable.

Okay.	That's	It's	usually	good.	But	so	the	values	is	pretty	useful.

(42:42	-	42:52)

And	what	did	it	return	back	to	us?	It	said	it	returned	an	array.	Basically,	a	lot	of	pandas
will	return	things	that	look	like	lists.	They	look	like	lists.

(42:52	-	42:57)

They	quack	like	lists.	They	walk	like	lists.	They	smell	like	lists.

(42:58	-	43:06)

They	sound	 like	 lists.	But	 they	are	not	 lists,	OK?	And	 in	 fact,	 there's	a	word	 for	 that	 in
Python.	It's	called	duck	typing,	because	it	quacks	like	a	duck	and	walks	like	a	duck.

(43:06	-	43:21)

It	 is	a	duck.	So	instead	of	saying	list,	 I	will	say	a	list-like	object.	And	that	means	it's	an
object	that	basically,	for	all	intents	and	purposes,	lets	you	do	the	same	things	with	it	that
you	could	do	with	a	list,	OK?	In	most	cases,	that's	true.

(43:21	-	43:29)

In	some	edge	cases,	it	might	not	be	true.	In	most	things,	you'll	be	able	to	do	with	it,	OK?
So	I'll	say	a	list-like	object.	And	then	there's	a	bunch	of	them	that	we'll	work	with.

(43:30	-	43:39)

But	 basically,	 you	 can	 think	 of	 them	 for	 now	 as	 lists.	 But	 remember,	 they're	 not
technically	lists.	I	just	don't	want	to	tell	you	anything	that's	not	true,	OK?	So	in	this	case,
it's	an	array,	which	is	a	list-like	object.

(43:40	-	43:49)

And	it	gives	us	our	values	that	we	have.	So	it	skips	the	index,	OK?	So	that's	pretty	useful
if	we	want	 to	 just	 know	what	 the	 values	 are.	 Let's	 run	 through	a	 couple	 of	 extra	 cool
ones.

(43:49	-	44:03)

I'm	not	going	to	dwell	on	these.	s.min.	s.min,	open	parenthesis,	close	parenthesis.	"Out
left	bracket,	13	right	bracket,	colon,	5."	5,	that	gave	the	minimum	value.

(44:03	-	44:25)

s.max.	"Right,	out	left	bracket,	14	right	bracket,	colon,	15."	15	gave	the	max	value.	What
else	is	useful?	s.std.	Is	that	what	you're	thinking?	"Right,	in	left,	out	left	bracket,	15	right
bracket,	colon,	4.1833."	The	standard	deviation,	that's	std.

(44:25	-	44:30)

s.std,	 open	 parenthesis,	 close	 parenthesis.	 This	 is	 maybe	 one	 you	 haven't	 heard	 of.
Maybe	you	have.

(44:31	-	44:47)

It's	a	measure	of	 the	variability	of	 the	data.	So	 it	 tells	you	basically	how	spread	out	or
distributed	the	data	is.	If	the	data	is	clustered	around	the	mean,	then	it	will	have	a	low
standard	deviation.

(44:47	-	45:03)

If	there's	a	lot	of	outliers	or	a	lot	of	the	data	is	away	from	the	mean,	then	you're	going	to
get	 a	 high	 standard	 deviation.	 It's	 actually	 a	 pretty	 useful	 number	 once	 you	 learn	 to
interpret	it	a	little	bit.	And	then	there's	others.

(45:03	-	45:23)

There's	s.count.	 "Out	 left	bracket,	16	right	bracket,	colon,	5."	5.	But	we	might	 throw	a
few	more	at	you	over	the	course	of	this.	But	basically,	if	there's	anything	you	would	kind
of	 conventionally	 do	with	 a	 list	 of	 numbers,	 you	 can	 sum	 things.	 s.sum	 is	 provided	 to
you.

(45:23	-	45:34)

So	there's	a	lot	of	methods	here.	s.sum.	"Right	out	left	bracket,	17	right	bracket,	colon,
55."	55	is	the	sum	of	all	the	items	in	the	list.

(45:34	-	45:42)

So	there's	a	lot	here.	But	we're	going	to	move	on.	But	remember	that	there's	just	a	lot
provided	to	you	as	methods	in	here.

(45:42	-	45:48)

And	remember,	we	had	s.count	here.	But	we	can	also	use	 len.	Remember,	we	had	 len
also	works	on	our	series.

(45:49	-	46:07)

L-E-N,	 open	 parenthesis,	 close	 parenthesis.	 Or	 sorry,	 L-E-N,	 open	 parenthesis,	 s,	 close
parenthesis.	L-E-N,	len,	s,	"out	left	bracket,	18	right	bracket,	colon,	5."	And	that	will	also

work	 on	 those	 list-like	 objects	 that	 might	 not	 necessarily	 have	 a	 count	 method	 inside
them.

(46:07	-	46:19)

Len	will	work	on	those	as	well.	So	like	our	s.values,	it	will	also	work	on	those.	So	what	I
want	to	do	now	is	we're	going	to	keep	our	budget	variable	around.

(46:19	-	46:34)

And	 what	 we're	 going	 to	 do	 is	 we're	 going	 to	 think	 a	 little	 bit	 about	 two-dimensional
objects.	Before	we	move	on,	I	just	want	to	double	check	that	it's	not	anything	I	wanted	to
show	you	that	we're	moving	on.	So	let's	go	to	other.

(46:35	-	46:48)

...	We	did	that.	Describe.

(46:48	-	46:54)

...	...	Describe	is	one	I	almost	skipped.	Because	I	don't	personally	use	it.	But	I	want	to	use
it	to	illustrate	a	point.

(46:55	-	47:14)

So	let's	learn	one	more,	and	then	we'll	move	on.	So	it's	s.describe,	"d-e-s-c-r-i-b-e,"	open
parenthesis,	close	parenthesis.	And	now	it's	going	to	give	us	a	lot	of	output.

(47:14	-	48:04)

Let's	 listen	 to	 some	 of	 it.	 "count	 5.0000	 mean	 11.0000	 std	 4.1833	 min	 5.0000	 25%
10.0000	50%	10.0000	75%	15.0000	max	15.0000	type	colon	float	64	dtype	float	64	 in
left	 bracket	 20	 right	 dtype	 cortana	 window"	 dtype	 float	 64.	 So	 that	 means	 these	 are
floating	point	numbers	in	this.

(48:04	-	48:28)

What	 is	all	 this?	Now	I	kind	of	 let	that	all	run.	So	you'd	hear	all	of	 it	 to	kind	of	make	a
point,	which	 is	that.	So	a	 lot	of	times	the	functions	 like	this	or	methods	rather	 like	this
that	print	out	a	whole	lot	of	information	are	pretty	widely	used	by	sighted	data	scientists,
especially	 when	 they're	 starting	 out,	 they're	 doing	 what's	 called	 exploratory	 data
analysis.

(48:28	-	48:38)

And	you	don't	even	know	the	questions	that	you're	asking.	You	might	just	say,	hey,	print
out	all	 the	normal	 statistical	 things.	So	describe	prints	out	 the	 standard	deviation,	 the

mean,	the	median,	the	count.

(48:39	-	48:55)

And	then	it	also	the	25th	and	75th	percentiles.	That's	kind	of	a	it's	basically	it	means	if
you	divided	it,	the	data	set	in	half,	the	first	half,	the	median	of	the	first	half	would	be	the
25th	percentile.	The	median	of	the	second	half	would	be	the	75th	percentile.

(48:56	-	49:23)

And	another	way	of	 saying	 that	 is	 it	would	be	 the	 item	closest	 to	 the	quarter	and	 the
75th	percent	mark	in	the	data	set.	OK,	so	these	kinds	of	functions	are	commonly	used	by
sighted	data	scientists,	and	we	can	use	them	to	especially	if	we're	preparing	something
for	sighted	people	to	use.	But	in	my	experience,	and	I	also	my	recommendation	is	that
you	learn	the	specific	ones	and	you	ask	for	more	specific	information.

(49:24	-	49:52)

Why	is	that?	Because	the	answer	is,	do	you	really	want	to	wait	for	all	of	all	of	this	stuff	to
print	out	when	you	 just	maybe	want	one	or	two	of	 these	things?	 It's	actually	 faster	 for
you	to	print	out	each	one	individually,	probably,	and	to	listen	to	that,	because	a	bunch	of
these,	 you're	almost	 certainly	not	going	 to	want	all	 of	 them	every	 time.	When	 I	 teach
sighted	students,	they	ask	me,	why	don't	we	always	use	describe?	Because	it	prints	out
so	much	information.	And	my	answer	is	describe	is	not	that	useful.

(49:52	-	50:07)

If	you	say	we're	going	to	do	something	with	the	mean,	you	want	to	do	something	with
the	median,	which	you	often	do	want	to	do.	Also,	it's	just	a	lot	of	information,	you	know.
If	 you're	 preparing	 something	 for	 someone	 else,	 you	 may	 just	 want	 to	 be	 like,	 hey,
what's	the	mean?	And	your	intent	is	more	obvious.

(50:07	-	50:25)

That's	what	I	say	to	my	sighted	students.	And	for	you	guys,	 I	say,	you	might	say,	well,
why	 would	 we	 use	 describe?	 And	 my	 answer	 is,	 well,	 sometimes	 you're	 going	 to	 be
working	with	sighted	people,	and	sometimes	you're	going	to	be	preparing	something	like
an	 exploratory	 data	 analysis	 that	 you	 know	 other	 people	 are	 going	 to	 read,	 so	 you'd
want	to	use	it.	But	I	would	say	generally	for	your	own	use,	we're	not	going	to	want	to	use
stuff	like	this.

(50:26	-	50:40)

And	we're	also	not	going,	we'll	 talk	more	about	 this,	but	we're	also	not	 really	going	 to
use	those	big,	long	representations	that	much.	You	need	to	know	what	they're	like,	but
we're	 not	 going	 to	 use	 them	 as	 much.	 Once	 you're	 a	 little	 more	 experienced,	 once	 I

teach	you	a	few	more	things,	you're	not	going	to	use	that	long	stuff	as	much.

(50:40	-	51:13)

We're	going	to	get	small	amounts	of	 information	back,	very	 focused,	which	 is	good	for
screen	reader	users	who	don't	want	to	hear	so	much	stuff,	okay?	Okay,	so	that	was	the
point	 I	 wanted	 to	 make	 with	 describe.	 Okay,	 moving	 on	 now,	 we're	 going	 to	 work	 on
making	our	 two-dimensional	data,	okay?	One	thing	we	touched	on	here,	and	please,	 if
there	are	questions	that	are	coming	up	a	lot	in	the	chat,	maybe	one	of	the	helpers	could
kind	of	get	on	and	kind	of	filter	 it	up	to	me.	Anything	like	that,	this	 is	probably	a	good
point	for	that.

(51:14	-	51:36)

I	think	it	seems	like	people	are	following	along	pretty	well,	though	again,	a	reminder	to
everyone	that	if	you	do	have	questions,	don't	hesitate	to	pop	them	in	the	chat.	One	thing
we	did	discuss	briefly	is	that	these,	for	instance,	this	s.sortValues	won't	actually	change
the	order	of	your	series.	So	don't	worry,	you're	not	messing	around	with	your	series.

(51:37	-	52:00)

You	 can	 save	 a	 new	 variable	 as	 s.sortValues.	 So	 for	 instance,	 s.sorted	 equals
s.sortValues,	and	that'll	save	 it	saved.	 I	 think	there's	also	a	way	to	put	 in	place	equals
true,	and	that	will	overwrite	your	original	variable	for	the	series.	But	all	that,	that's	a	little
bit	of	a	tangent	to	say,	not	to	worry,	you're	not	changing	anything	here	just	by	printing
these	things	out.

(52:04	-	52:17)

Thank	you	so	much,	Sarah.	Okay,	and	if	people	have	other	questions,	drop	them	in	the
chat,	and	if	people	are	having	the	same	question,	I	can	also	answer.	Or	if	it's	an	involved
answer,	just	let	me	know,	helpers,	and	I'll	explain	on	the	mic.

(52:18	-	52:29)

So	 let's	 talk	about,	 let's	work	toward	creating	our	two-dimensional	dataset.	First,	we're
going	to	spend	just	a	little	time	on	this	idea	of	labeling	data.	That's	not	a	technical	term,
it's	just	a	descriptive	term.

(52:29	-	52:50)

Basically,	giving	names	to	things	is	a	very	common	thing	in	programming,	okay?	And	the
index	is	one	way	we	did	that.	So	now	we're	going	to	have	to	learn	one	other	way	to	do
that,	and	that	is,	it's	what's	called	a	key,	okay?	And	a	key	is	a	way	you	can	look	up	some
data.	So	since	we're	moving	on	to	a	new	section,	I'm	going	to	clear	the	screen,	Control-L.

(52:52	-	53:33)

We	already	have	19	inputs,	so	that's	pretty	cool.	And	then	let's	do,	I'm	going	to	explain	a
new	datatype	to	you,	but	this	datatype	is	kind	of	 just	a	stepping	stone,	okay?	And	this
datatype	is	called	a	dictionary,	okay?	And	basically,	I'm	going	to	show	you	the	dictionary,
but	 for	 the	 interest	of	 time,	 if	 you	 think	you	can	go	ahead	and	put	 it	 in,	put	 it	 in,	but
we're	going	to	do	another	one	right	after.	So	you	may	just	want	to	sit	back	and	actively
listen,	and	then	you'll	have	the	practice	to	make	the	dictionary	in	the	next	section,	okay?
Just	for	the	interest	of	time.

(53:36	-	54:48)

So	what	we're	going	to	do	is	we're	going	to	create	a	little	phone	book,	okay?	And	if	you
remember,	this	makes	me	feel	very	old,	but	many,	many	years	ago	when	I	was	a	There
was	such	a	thing	as	a	phone	book,	and	it	was	a	big,	thick	book	that	you	could	use	to	put
down	a	whole	lot	of	them	to	stand	and	reach	a	high	shelf	or	something,	which	actually
probably	made	 it	 the	most	useful,	but	you	could	also	use	 it	 to	 look	up	people's	phone
numbers.	And	 it	would	basically	be	 their	name,	and	 then	you	would	have,	 it	would	be
their	name	on	one	column,	and	then	on	the	other	side,	it	would	be	their	phone	number,
okay?	And	you	could	use	their	name	to	look	up	their	phone	number,	because	the	names
were	all	in	alphabetical	order,	okay?	So	what	we're	going	to	do	is	we're	going	to	create	a
phone	 book,	 because	 that's	 essentially	 what	 this	 thing	 I'm	 going	 to	 show	 you	 is,	 this
dictionary.	 It's	 a	way	 to	 put,	 it's	 a	way	 to	 contain	 data	 so	 it	 can	 be	 easily	 looked	 up,
okay?	So	you	have,	and	what	it	consists	of	is,	it's	basically	like,	imagine	it's	kind	of	like	a
list,	so	it's	one-dimensional	data,	but	each	item	has	its	own	name,	okay?	And	that	name
is	called	a	key,	and	we	can	use	the	key	to	look	up	what	the	value,	which	is	the	data.

(54:48	-	55:16)

So	the	key	is	the	name,	the	value	is	the	data,	and	we	call	those	key-value	pairs,	okay?
So	 we're	 going	 to,	 I'm	 going	 to	 create	 a	 phone	 book,	 and	 then	 I'm	 going	 to	 look
something	up	in	it,	but	you	can	decide	if	you	want	to	follow	along,	go	for	it.	I'm	going	to
do	 it	 kind	 of	 quickly	 to	 explain,	 and	 then	 we're	 actually	 going	 to	 create	 our	 own
dictionary	 in	the	next	section,	and	you'll	need	to	create	that	dictionary,	so	up	to	you	if
you	want	to	create	the	phone	book,	okay?	I'm	just	pressing	delete	a	bunch	of	times.	So
I'm	going	to	type	phone	underscore	book.

(55:17	-	56:00)

"P-H-O-N-E,"	 phone,	 that's	 our	 variable	 name,	 space,	 book,	 equals,	 space,	 equals,	 and
now	 we're	 going	 to	 use	 a	 curly	 brace,	 which	 is	 a,	 if	 you're	 using,	 we're	 doing,	 using
square	brackets	a	lot.	If	you	hold,	if	on	an	English	keyboard,	if	you	hold	down	shift	and
you	press	the	left	square	bracket,	it'll	create	a	curly	brace,	and	it	says	left	brace,	so	it's	a
new	 kind	 of	 syntactic	 structure,	 okay?	 Now,	 you	 can,	 once	 you	 start	 a	 brace,	 you're

allowed	 to	 create	 your	 own	 new	 lines,	 okay?	 And	 sometimes	 that	 can	 help	 you	 keep
track	of	things.	So	I'm	going	to	hit	enter,	but	you	don't	have	to	do	this.

(56:00	-	56:48)

I'm	going	to	hit	enter,	and	then	I'm	going	to	add	my	first	key-value	pair.	Okay,	I	hit	enter
just	 for	 my	 own	 sanity.	 And	 then	 I'm	 going	 to	 do	 quote,	 I'm	 going	 to	 say	 my	 name,
Patrick,	 and	 this	 is	 going	 to	 be	 my	 phone	 number,	 okay?	 "Quote,"	 so	 that's	 quote,
Patrick,	quote,	and	then	that's	 the	key.	So	that's	what	 I'm	going	to	use	to	 look	up	this
data.	Then	I	do	a	colon,	and	the	colon	is,	it's	kind	of	in	the	middle	of	the	middle	row	on
the	keyboard.	If	you	go	all	the	way	to	the	right	on	the	letters	in	the	middle	on	the	English
keyboard,	it's	the	first	special	character	to	the	right	of	the	middle	row	that	has	ASDF	on
it.

(56:49	-	56:55)

And	it's,	you	hold	down	shift	to	access	it.	That's	colon.	And	then	I'm	going	to	do	another
double	quote.

(56:56	-	57:19)

Quote.	And	then	 I'm,	oh,	actually,	you	know	what?	 I'll	make	these	 integers.	So	 I'm	 just
going	 to	say	my	phone	number,	which	 is,	of	course,	and	you	guys	all	know	my	phone
number	 is	 999-999-9999.	 Now,	 you	 guys	 can	 call	 me	 anytime.	 Patrick	 and	 my	 phone
number	is	999-999-9999.	Colon.

(57:20	-	57:31)

And	 then	 I	 did	 a	 comma	 and	 I	 hit	 enter	 again.	 So	 that,	 so	 the	 phone	 book	 is,	 it's
phonebook	equals	Curly	Brace.	And	then	I	made	a	new	line	just	for	my	own	sanity.

(57:31	-	57:40)

You	don't	have	to	do	that.	Then	I	have	a	string,	Patrick,	colon,	and	then	an	integer,	which
is	our	value.	That's	the	actual	data	we're	storing.

(57:42	-	57:47)

999-999-9999.	And	then	I	do	a	comma.	And	now	we're	doing	another	key	value	pair.

(57:47	-	57:58)

So	the	pairs	are	separated	by	commas.	And	within	the	pair,	you	have	a	colon	to	separate
the	key	and	the	value.	Now	we're	going	to	do	Sarah,	my	co-instructor.

(57:58	-	58:27)

Quote,	 "S-A-R-A-H,"	 Sarah,	 colon,	 space.	 So	 Sarah,	 as	 a	 string,	 quote,	 Sarah,	 quote,
colon.	 And	 of	 course,	 we	 all	 know	 Sarah's	 phone	 number,	 which	 is	 111-111-1111	 Of
course,	you	have	to	remember	the	plus	44	for	the	UK.	Yeah,	otherwise	you're	not	going
to	get	through	to	her.	OK.

(58:29	-	58:36)

Now,	 I'm	not	sure,	Sarah,	make	sure	you	call	 in	the	right	time	frame.	So	 it's	five	hours
forward	there,	too,	as	well.	So	press	Enter.

(58:37	-	58:47)

And	then	go	through	the	right	brace.	Remember,	the	brace	is	above	the	square	bracket.
You	hold	down	Shift,	right	brace.

(58:47	-	58:55)

And	I	know	this	is	probably	the	most	complicated	thing	we've	put	in	so	far.	So	no	shame
if	you	get	it	wrong.	I	get	these	wrong	all	the	time,	because	I	kind	of	start	rushing.

(58:55	-	59:01)

And	I'll	leave	off	a	quote.	I'll	leave	off	a	colon.	It's	very	easy	to	mess	these	up.

(59:02	-	59:24)

But	I	didn't	do	it	correctly.	So	phone	book	equals	left	brace,	new	line,	the	string	Patrick,
colon,	 the	 integer,	 not	 very	 long	 integer	with	a	 lot	 of	 nines,	 comma,	 the	 string	Sarah,
colon,	very	long	integer	with	a	lot	of	ones.	I	put	another	comma	there.

(59:24	-	59:37)

It's	not	necessary	to	put	a	comma	at	the	 last	 item.	But	 I	 recommend	it,	because	you'll
not	mess	yourself	up	as	much.	And	then	I	did	a	right	brace,	OK?	That's	our	dictionary.

(59:37	-	59:45)

And	now	 that	we	have	 the	dictionary	defined,	we	can	 type	phone	book.	Phone	book.	 I
just	said	book.

(59:45	-	59:56)

It's	phone	underscore	book.	"Out	left	bracket,	21	right	bracket,	colon,	left	brace,	Patrick,
colon,	9999999999."	This	is	the	representation	of	the	object.

(59:56	-	1:00:10)

Now,	 to	pull	out	my	phone	number,	now,	 there's	only	 two	numbers	 in	here,	 right?	But

imagine	there	were	thousands	of	numbers,	OK?	And	this	would	be	more	useful.	But	let's
do	phone	underscore	book.	And	I'm	not	going	to	go	slow.

(1:00:10	-	1:00:26)

But	phone	underscore	book,	left	square	bracket,	book.	And	then	I	type	in	quotes	Patrick,
OK?	So	quote,	"quote,	Patrick,	quote,	right	bracket."	And	then	I	end	with	a	bracket.

(1:00:26	-	1:00:37)

So	it's	just	like	our	slicing	syntax.	But	instead	of	giving	a	number,	we	give	it	a	string	that
is	 our	 key,	 OK?	 And	 you	 can	 use	 other	 things	 for	 keys.	 You	 can	 have	 keys	 that	 are
integers.

(1:00:37	-	1:01:20)

You	 can	 have	 keys	 that	 are	 actually	 more	 complicated	 things	 that	 I	 actually	 don't
recommend	choosing.	But	the	most	common	ones	would	be	integers,	floats,	or	strings,
OK,	 to	 pick	 as	 keys,	 all	 right?	 So	 in	 this	 case,	 it's	 a	 string,	 which	 is	 Patrick.	 "Out	 left
bracket,	22	right	bracket,	colon,	999,	999,	9999."	OK,	 just	 in	case	you've	forgotten	my
number,	 there	 it	 is,	 phone	 underscore	 book,	 open	 square	 bracket,	 quote,	 Patrick,	 my
name,	which	is	the	key,	close	the	quote,	close	the	square	bracket.	And	I	hit	Enter.	And
then	it	printed	out	the	data,	which	is	in	that	key	value	pair.

(1:01:20	-	1:01:48)

So	remember,	the	Patrick	was	kind	of	a	 label	on	the	data,	which	 is	the	phone	number,
OK?	And	this	is	very	common.	A	lot	of	things	in	programming	are	really	just	about	giving
things	names,	variables,	indexes,	and	now	key	values,	OK,	key	value	pairs,	all	right?	So
now	I've	kind	of	shown	you	how	to	do	that.	Now	let's	create	together	a	new	dictionary,
OK?	And	this	 is	going	to	be	our	two-dimensional	data	set,	all	 right?	 I	 just	want	to	do	a
time	check.

(1:01:52	-	1:02:02)

"2	colon	6	PM.	2	0	6,	right?	2	colon	7	PM."	2	7	PM,	that's,	OK,	it	didn't	say	0	7,	but	that's
fine.

(1:02:03	-	1:02:31)

I'm	assuming	 it's	2	0	7.	 I	 think	we	should	be	OK	 for	 time.	OK,	 so	now	 let's	 create	our
dictionary	 that	 we're	 going	 to	 use	 for	 our	 two-dimensional	 data	 set,	 OK?	 Let's	 create
three	variables	with	each	a	list	of	five	items.	And	then	we're	going	to	use	those	to	create
the	 dictionary,	 because	 I	 think	 that's	 easier	 than	 creating	 it	 all	 in	 one	 go,	 OK?	 So	 we
already	have	our	budget.

(1:02:32	-	1:02:45)

But	if	you	haven't	created	the	budget,	it	was	budget	equals	square	bracket	10	10	5	15
15,	OK?	That's	our	budget.	But	if	you	already	have	the	budget	assigned,	you	don't	have
to	do	it	again.	And	now	let's	get	our	other	two.

(1:02:45	-	1:03:01)

And	I	want	to	do	it	the	same	with	the	tutorials.	I'm	going	to	pull	it	out	of	my	notes.
...		 "June,	 July,	 September,	 October."	 So	 we	 have	 June,	 July,	 September,	 October,
November.	So	it's	going	to	be	a	list	with	five	items.

(1:03:01	-	1:03:09)

Each	is	a	string.	June,	July,	September,	October,	November,	OK?	So	let's	create	that	one.
And	we	call	that	month,	I	think.

(1:03:09	-	1:03:12)

Month	 equals	 left	 bracket.	 June,	 July,	 September,	 October,	 November,	 right	 bracket.
IPython.

(1:03:12	-	1:03:20)

So	let's	do	month	equals.	"M-O-N-T-H	month	equals	space."	Open	square	bracket.

(1:03:20	-	1:03:29)

Left	bracket.	Quote.	And	then	I'm	going	to	say,	it	started	in	June,	right?	Month	equals	left
bracket.

(1:03:29	-	1:03:53)

June,	 July,	 September,	 October,	 November,	 right	 bracket.	 That's	 a	 lot	 of	 text.	 "June,
comma,	space,"	July,	"July."	Remember,	they	have	to	be	surrounded	by	quotes,	and	you
separate	them	with	commas.	Quote,	space.	June,	July,	September,	October,	November.

(1:03:54	-	1:04:08)

I'm	 not	 going	 to	 type	 all	 that	 in	 one	 character.	 "Quote,	 right	 bracket."	 But	 it's	 month
equals,	open	square	bracket,	 June,	comma,	 July,	comma,	September,	comma,	October,
comma,	November,	comma.

(1:04:09	-	1:04:12)

Actually,	don't	put	the	comma	at	the	end.	But	you	can	if	you	want.	I	won't	mess	it	up.

(1:04:13	-	1:04:24)

And	then	close	the	square	bracket.	I	press	Enter.	"In	left	bracket,	24."	OK,	now	I'm	safe	in
my	month	variable,	OK?	So	now	we	 should	have	a	budget.	 The	budget	 should	be	 five
items	long.	The	month	should	be	five	items	long.

(1:04:24	-	1:04:36)

We	need	to	create	one	more,	OK?	And	it's	going	to	be	cookie	budget,	OK?	Because	I	like
cookies,	OK?	Maybe	you	like	cookies	too.	I	don't	know	if	you	do.	But	hopefully,	you	do.

(1:04:38	-	1:05:04)

And	our	little	data	set	here	is	going	to	represent	the	budget.	We	have	the	total	budget
for	each	month	and	 the	budget	we	have	 for	cookies	each	month.	And	you	can	kind	of
imagine	this	as	like,	imagine	you're	like	a	child	in	like	1964,	OK?	And	your	budget	is	$7	a
month	or	 something	 like	 that,	OK?	 Just	we're	keeping	 things	 really	 simple,	OK?	So	our
cookie	budget	is	going	to	be,	and	I'm	going	to	use	the	same	value.

(1:05:04	-	1:05:44)

"Month	 equals	 left	 bracket,	 June,	 July,	 September,	October.	Month	 equals	 left	 bracket.
Month	equals	cookie	underscore	budget	equals	left	bracket,	3,	2,	0,	4,	5,	right	bracket."
3,	2,	0,	4,	and	5.	So	 let's	do	cookie	underscore	budget.	C,	budget,	space,	 left	bracket,
space,	 space,	 5.	 I	 think	 it	 was	 3,	 2,	 0,	 4,	 5.	 I	 went	 down	 fast	 there	 because	 I	 knew	 I
wasn't	 going	 to	 remember	 the	 numbers	 if	 I	 didn't.	 But	 it's	 cookie	 underscore	 budget
equals	 open	 square	 bracket,	 3,	 2,	 0,	 4,	 5,	 OK?	 And	 if	 it's	 a	 little	 different	 for	 the
curriculum,	it's	not	the	end	of	the	book.

(1:05:45	-	1:06:00)

And	then	we	want	to	close	the	square	bracket.	"Right	bracket."	Should	I	close	it?	"Right
bracket."	Yeah,	do	it.	5.	OK,	so	now	we	should	have	three	lists.	In	left	bracket,	25,	right
bracket,	colon.

(1:06:01	-	1:06:18)

OK,	but	no	output	because	I	saved	a	variable,	OK?	And	now	one	thing	I	do	want	you	to
check,	I	know	we're	all	frantically	inputting	lists	right	now	and	not	really	listening	to	me.
But	what	I'm	going	to	do	is	I'm	going	to	use	my	len	function	to	check	all	three	lists.	If	any
of	them	don't	have	five	items,	we're	going	to	have	a	problem,	OK?	We're	going	to	have	a
problem.

(1:06:19	-	1:06:32)

So	 let's	do	 len	budget.	 Len.	 "Out	 left	bracket,	25,	 right	bracket,	 colon."	5.	 Len.	Cookie
budget.	Underscore	budget.

(1:06:32	-	1:06:35)

"Cookie.	Budget.	37.

(1:06:36	-	1:06:42)

In	left.	Cookie.	Len."	I	got	an	error	there,	but	I.	"Cookie.	Right.	Name	error.

(1:06:42	-	1:06:48)

Trace	back."	Did	I	call	it	something	else?	"In	37.	In	left.

(1:06:49	-	1:06:56)

Cookie	slash.	In	left	bracket,	29,	right	bracket,	colon.	Cookie	slash.

(1:06:57	-	1:07:01)

In	left.	In	left	bracket,	29."	Let's	just	see	what	I	did	wrong	there.

(1:07:03	-	1:07:07)

Yeah.	In	left	bracket.	In	left	bracket,	colon.

(1:07:07	-	1:07:12)

5,	right	bracket.	Cookie.	In	left	bracket,	29,	right	bracket,	colon.

(1:07:13	-	1:07:24)

Cookie	line	budget	equals	left	bracket,	3.	"In	left	bracket,	37	dash."	Am	I	doing	caps	or
something?	"Name	error.	Trace	back.

(1:07:25	-	1:07:30)

In	caps	lock	on.	Caps	lock	off.	Cookie	slash.

(1:07:33	-	1:07:37)

T.	37."	Yeah,	I	don't	know	what	I	did	wrong	there.	I'm	going	to	save	the	cookie.

(1:07:38	-	1:07:47)

Yeah,	you	tell	me	what	I	did	wrong.	I	was	going	to	say	that	I	don't	see	caps	lock	on,	but
yeah.	Yeah,	odd,	right?	Yeah,	the	chat	is	saying	you	missed	an	O	in	cookie.

(1:07:48	-	1:08:07)

"Space."	There's	only	one	O	in	cookie?	IE	line	budget.	Yeah,	it	was	cookie	with	one	O.	So

this	really	is	like	a	small	child	in	1964,	OK?	But	let's	do,	you	can	imagine	all	the	R's	being
backward	and	stuff	like	that.

(1:08:07	-	1:08:20)

Let's	 do,	 I'll	 just	 do	 this.	 I'm	 going	 to	 do	 cookie	 budget	 spelled	 correctly.	 And	 there's
something	about	programming	that	makes	my	spelling	ability	massively	decrease.

(1:08:20	-	1:08:37)

My	 already	 poor	 spelling	 ability	 just	 decreases	 precipitously	 when	 I'm	 doing
programming.	It	must	be	like	a	left	brain,	right	brain	thing.	"Equals	cookie."	...	I	just	fixed
it,	basically.	If	you	got	it	right,	I	just	overwrote	the	variable	with	a	new	variable,	OK?	Or	I
reassigned	it.

(1:08:38	-	1:09:09)

All	 right.	 So	 len	 cookie	 budget.	 "Cookie	 line	budget.	Out	 left	 bracket	 33,	 right	 bracket
colon."	And	then	let's	do	len	cookie	budget.	And	then	we're	going	to	do	len	month,	OK?
"Out	left	bracket	34,	right	bracket	colon."	So	now	let's	create	our	data	frame.	And	then
I'm	going	to	explain	a	few	things	about	how	we	work	with	two	dimensional	data.	So	it's	a
two	step	process.

(1:09:09	-	1:09:19)

So	we	first	create	a	dictionary.	And	then	we	create	the	data	frame	from	the	dictionary,
OK?	So	we	have	our	three	variables.	And	now	let's	use	them	to	create	the	dictionary.

(1:09:19	-	1:09:37)

So	we're	going	 to	call	 it	monthly	underscore	budget.	 "M-O-N-T-H-L-Y.	Monthly	budget."
Monthly	budget.	Monthly	underscore	budget	equals.	And	then	let's	do	an	open	brace.

(1:09:38	-	1:09:54)

And	 I'm	 going	 to	 press	 Enter	 just	 for	 my	 sanity.	 And	 then	 what	 we	 want	 to	 do	 is,	 in
quotes,	 I'm	 going	 to	 put	 budget.	 And	 these	 are	 the	 labels	 for	 what	 are	 going	 to	 be
columns	in	a	minute.

(1:09:54	-	1:09:59)

But	 we'll	 talk	 about	 that	 in	 a	 minute.	 But	 basically,	 remember,	 the	 key	 is	 the	 label.
Budget.

(1:09:59	-	1:10:08)

And	I	did	lowercase.	I	keep	everything	lowercase,	OK?	Don't	confuse	yourself.	And	then	I

did	a	colon	and	then	the	variable	cookie	budget.

(1:10:09	-	1:10:15)

And	then	we'll	go	over	this	again.	"Cookie	line	budget.	Cookie.

(1:10:17	-	1:10:20)

Cookie	line	budget."	I'm	too	lazy.	OK.

(1:10:21	-	1:10:27)

And	then	let's	do	quote.	Oh,	no.	That's	completely	incorrect.

(1:10:27	-	1:10:37)

That	should	be	budget.	...	Budget,	in	quotes,	colon,	budget,	the	variable,	comma.

(1:10:37	-	1:10:44)

And	let's	do,	in	quotes,	cookie	underscore	budget.	...	Colon.

(1:10:44	-	1:10:59)

And	then	let's	use	our	cookie	budget	variable.	And	then	let's	do	month,	in	quotes.
"Quote."	I'll	go	over	this	again.

(1:10:59	-	1:11:05)

I	know	this	is	confusing.	"M-O-N-T-H,	month,	colon."	And	a	new	line.

(1:11:05	-	1:11:12)

And	now	I'm	going	to	do	the	right	brace.	Right	brace.	So	what	do	we	have	here?	We	have
monthly	underscore	budget.

(1:11:13	-	1:11:21)

That's	our	variable	name.	Equals	left	brace.	I	did	a	new	line,	but	you	don't	have	to.

(1:11:23	-	1:11:32)

Quote,	budget,	end	quote,	colon.	Then	our	budget	variable.	Budget	with	no	quote,	OK?
Comma.

(1:11:33	-	1:11:42)

Next	 line	 is,	 quote,	 cookie	 underscore	 budget.	 Quote,	 colon.	 And	 then	 we	 have	 our
cookie	underscore	budget	variable.

(1:11:43	-	1:11:47)

Comma.	Then	we	have	a	new	line.	And	then	we	have	month,	in	quotes.

(1:11:48	-	1:12:00)

So	quote,	month,	quote,	colon.	And	 then	we	have	our	month	variable,	M-O-N-T-H.	And
then	we,	I	did	put	a	comma,	but	you	don't	need	to,	on	the	last	one.

(1:12:00	-	1:12:16)

And	then	you	can	do	a	right	brace,	OK?	I'm	going	to	hit	Enter.	Hopefully	it'll	work	for	me.
Now,	so	what	we	have	is	a	variable,	monthly	budget,	with	three	key	value	pairs.

(1:12:17	-	1:12:51)

And	the	key	is	each	describing	it.	But	we	basically	just	kept	it	the	same	as	the	variable
names,	OK?	So	it's	budget,	in	quotes,	budget,	the	variable,	cookie	underscore	budget,	in
quotes,	cookie	underscore	budget,	the	variable,	and	then	monthly,	or	month,	in	quotes,
month,	the	variable,	OK?	If	people	in	the	chat	want	to	kind	of	paste	this	in	so	people	can
copy	 it	 in	 case	 they're	 having	 issues	 or	 something,	 then	 go	 ahead	 and	 paste	 it	 in	 for
people.	So	they	have	something	to	copy	if	they're	having	trouble.

(1:12:52	-	1:13:05)

But	it	is	good	practice.	Yeah,	put	it	in	the	chat.	And	then	it	is	good	practice	to	type	this
all	 in	 and	 just	 take	 your	 time,	OK?	 I	 know	 it	 can	be	 very	 easy	 to	 get	 syntax	 errors	 in
something	like	this.

(1:13:05	-	1:13:13)

It's	 totally	normal	when	you	start	 learning	programming	 to	get	constant	syntax	errors.
And	you	know	what?	You'll	be	missing	a	quote.	There	won't	be	a	colon.

(1:13:13	-	1:13:38)

It'll	be	something	annoying.	And	the	things	to	try	are	you	can	start	again	or	go	character
by	character,	OK?	And	using	the	review,	OK?	And	in	fact,	I	think	in	some	ways,	I	think	it
makes	us	more	patient	with	stuff	 like	that.	 I	 feel	 like	a	 lot	of	 times	 I've	noticed	when	 I
teach	sighted	people,	it's	like	they're	like,	they	don't	really	think.

(1:13:38	-	1:13:45)

They're	seeing	it	in	their	brain	so	much	that	they're	not	seeing	what's	on	the	screen.	So
they'll	kind	of	be	like,	oh,	no,	but	I	did	everything	right.	But	it's	really	hard	to	miss.

(1:13:46	-	1:13:52)

It's	 really	 easy	 to	miss	 something	 visually.	 I'm	not	 saying	 it's	 not	 useful	 to	 see	 things
visually	too.	But	it's	really	easy	to	miss	something	visually.

(1:13:52	-	1:14:06)

But	often,	if	you	review	character	by	character	using	NVDA,	you're	actually	fairly	liable	to
catch	 things	because	you're	 like,	oh,	wait,	oh,	whoa.	You're	not	going	 to	have,	 there's
not	really	as	many	mirages	that	can	win.	OK,	so	we	have	our	monthly	budget.

(1:14:06	-	1:14:17)

I	was	 just	 letting,	 giving	 you	 some	 time	 to	 catch	 up	 there.	 So	we	have	 our	 dictionary
now.	And	remember	our	type	function,	our	old	faithful	type	function?	We	haven't	used	it
in	a	while.

(1:14:17	-	1:14:41)

Let's	 just	run	 it	on	monthly	budget.	P.	So	T-Y-P-E,	open	parenthesis,	monthly.	 ...	"Right
paren,	out	left	bracket	36,	right	bracket	colon,	dict."	It	pronounced	it	kind	of	funny,	but
dict.	It's	short	for	dictionary.

(1:14:41	-	1:14:55)

That's	 our	 data	 type	 that	 we're	 using	 here.	 So	 remember,	 dictionary,	 it's	 really	 just
labeled	data.	And	so	what	we	did	here	was	 that	we	had	our	 three	 lists,	each	with	 five
items,	 saved	 as	 variables,	 and	 then	 we	 gave	 them	 names	 in	 the	 dictionary,	 keys,	 as
keys.

(1:14:56	-	1:15:04)

Now	we're	going	to	use	this	monthly	budget.	We	could	pull	out	data	 from	this,	but	we
have	no	reason	to.	So	what	we're	going	to	do	is	create	a	data	frame	in	Pandas.

(1:15:04	-	1:15:10)

So	we're	going	to	do	Pandas.	"P-A."	OK,	so	sorry,	let's	save	it	to	a	variable.

(1:15:10	-	1:15:31)

So	D-F,	and	I'll	explain.	This	is	another	conventional	variable,	short	variable.	So	it's	D-F
equals,	and	now	do	Pandas	dot	data	frame.

(1:15:32	-	1:15:48)

And	it's	capital	D-A-T-A,	capital	F	frame.	"F-R-A-M-E,"	and	we	call	that	camel	case	or	word
case	is	what	people	call	it	sometimes.	The	camel	case	is	a	little	more	evocative.

(1:15:48	-	1:15:56)

Then	 open	 parenthesis.	 "Data	 frame."	 And	 then	 we're	 going	 to	 pass	 it	 our	 monthly
budget	variable.

(1:15:57	-	1:16:17)

...	So	 it's	D-F	equals	Pandas	dot	capital	D	data,	capital	F	 frame,	open	parenthesis.	And
then	we	pass	in	our	monthly	underscore	budget.

(1:16:17	-	1:16:26)

Then	we	 close	 the	parenthesis.	 And	 that	 should	 create	 a	 Pandas	data	 frame	 from	our
dictionary	and	assign	it	to	D-F,	the	variable	D-F.	It's	a	very	short	variable.

(1:16:28	-	1:16:36)

"In	 left	 bracket,	 38,	 right	 bracket."	 Because	we	 assigned	 a	 variable,	we	 don't	 get	 any
output.	But	now	we	have	a	data	frame	variable.

(1:16:37	-	1:16:49)

And	just	 like	with	S	before,	D-F	 is	a	conventional	variable	name	for	a	data	frame.	So	S
was	a	conventional	name	for	series.	D-F	is	a	conventional	one	for	data	frame.

(1:16:49	-	1:17:09)

If	you	only	have	one	data	frame,	then	people	will	conventionally	use	the	variable	name
D-F	 for	 the	data	 frame.	 If	 you	have	more	 than	one	data	 frame	and	you're	doing	other
things	like	that,	you	should	probably	give	them	other	names,	more	descriptive	names.	I
figure	people	are	kind	of	taking	a	while	to	catch	up.

(1:17:10	-	1:17:21)

But	I'm	going	to	start	explaining	a	little	bit	about	the	data	frame	here,	OK?	I'm	going	to
just	do	a	little	time	check,	whatever	you	like.	2,	or	"2	colon	22	PM."	2.22,	OK.

(1:17:22	-	1:17:46)

So	yeah,	so	now	I'm	going	to	show	you	a	couple	of	the	data	frame	fundamentals,	OK?	So
the	basic	things	you	can	do	with	the	data	frame.	So	the	first	thing	to	know	about	a	data
frame	 is,	well,	we'll	 look	 at	 the	 representation	 in	 a	minute.	 But	 before	we	 look	 at	 the
representation,	I	want	to,	which	is	only	marginally	useful	for	screen	reader	users,	I	want
to	talk	about	the	format.

(1:17:47	-	1:18:09)

So	the	data	frame,	it's	two-dimensional	data,	OK?	So	you	can	kind	of	think	about	it	as	if
you	imagine	a	line	going	from	left	to	right	in	your	mind.	And	then	for	each	item	on	that
line,	 there's	 also	 another	 list	 going	 from	 top	 to	 bottom,	 OK?	 And	 if	 you've	 ever	 used
Excel,	it's	the	same	as	a	spreadsheet.	So	you	have	from	left	to	right,	you	have	columns.

(1:18:10	-	1:18:31)

And	from	top	to	bottom,	we	have	rows,	OK?	It's	a	table,	OK?	So	we	have	an	x-dimension
and	a	y-dimension.	And	so	our	x-dimension	has	columns,	which	are	going	to	be	things
like	our	monthly	budget,	our	cookie	budget,	our	budget,	and	our	month.	Those	are	the
items	from	left	to	right.

(1:18:31	-	1:18:55)

We	have	three.	And	then	from	up	to	down,	the	rows	are	going	to	be	our	five	items	that
are	going	to	be	data	for	each	of	those,	and	each	month's	different	kinds	of	budget,	OK?
So	let's	try	out	a	few	different	things,	OK?	I	want	to	kind	of	get	to	some	stuff	at	the	end
that's	pretty	cool.	So	I'm	going	to	try	to	pick	up	the	pace	like	20%	here,	OK?	Let's	still	try
to	explain	things	fully.

(1:18:56	-	1:19:01)

So	 let's	do	clear.	 I'm	going	to	clear	things	because	we're	going	to	experiment	with	our
data	frame	now.	So	Control-L.

(1:19:02	-	1:19:14)

"In	left	bracket,	38,	right	bracket,	12."	We	now	have	our	data	frame	variable	that	we're
going	to	work	with.	So	let's	first	do	just	listen	a	little	to	what	the	format	of	the	data	frame
is,	the	representation.

(1:19:15	-	1:19:36)

D-F.	"D-F.	Out	left	bracket,	38,	right	bracket,	colon.	Budget	cookie	line,	budget	month."
That	was	the	column	names,	OK?	Now	let's	hear	the	actual	table	stuff.	"0,	10,	June	3."	0,
10,	 June.	 And	 then	 it	 said	 3.	 But	 it	 said	 June	 3rd.	 It's	 trying	 to	 predict	 things	 in	 a	 not
useful	way.

(1:19:36	-	1:19:50)

So	0,	10,	June	3rd,	OK?	So	the	first	item	is	the	index.	Remember,	it's	the	range	from	0	to
4.	So	that	first	item	is	not	going	to	really	mean	anything.	It	just	means	it's	the	first	item.

(1:19:50	-	1:19:56)

That's	what	the	0	is.	Then	10	was	our	budget.	The	month	was	June.

(1:19:56	-	1:20:03)

And	then	the	cookie	budget	was	3.	So	let's	hear	another	row.	"1,	10,	July	2."	1,	10,	July
2nd.

(1:20:04	-	1:20:09)

So	1	is	the	index.	10	is	the	budget.	July	is	the	month.

(1:20:09	-	1:20:14)

And	2	 is	 the	cookie	budget.	So	we're	going	 to	be	spending	$2	 that	month	on	cookies.
We'll	just	do	one	more.

(1:20:17	-	1:20:23)

"2,	5,	0,	September."	And	then	so	it's	so	on.	It'll	do	that	for	each	line,	OK?	I	won't	review
the	whole	thing.

(1:20:23	-	1:20:30)

And	at	the	end,	there's	no	D	type	or	anything	like	that.	That	is	because	there's	different
data	in	each	column.	So	a	D	type	doesn't	mean	anything.

(1:20:30	-	1:20:45)

There's	all	sorts	of	D	types	in	here.	We	have	integers.	And	we	also	have	strings,	OK?	So
now,	I	will	say	what	we're	going	to	learn	right	now	is	how	to	learn	a	whole	bunch	of	stuff
about	the	data	frame	without	using	the	string	representation.

(1:20:48	-	1:21:04)

And	 I'll	 talk	more	about	why	the	string	representation,	why	you're	actually	not	missing
out	 on	 that	 much	 by	 not	 reviewing	 the	 string	 representation.	 It	 actually,	 you're	 not
missing	out	on	very	much	compared	to	a	sighted	person.	But	 I'll	kind	of	 return	to	 that
topic	in	a	minute,	OK?	When	we	have	a	longer	data	set	where	it's	more	obvious.

(1:21:05	-	1:21:30)

All	right.	So	let's	do	a	couple	of	basic	functions	with	the	data	frame.	The	first	one	is,	and
this	 is	 what	 I	 always	 do	 within	 your	 data	 set,	 is	 how	 big	 is	 the	 data	 set?	 So	 let's	 do
df.shape.	df.shape,	S-H-A-P-E,	no	open	and	closed	parentheses.

(1:21:30	-	1:21:36)

So	it's	an	attribute,	not	a	method.	Some	of	these	are	attributes,	not	methods.	So	they're
kind	of	like	little	variables	inside	the	data	frame.

(1:21:36	-	1:21:52)

They're	not	functions	inside	the	data	frame.	"Out	left	bracket	39	right	bracket	colon	left
paren	5	3	right	paren."	So	it	said	left	paren	5	comma	3	right	paren.

(1:21:52	-	1:22:05)

So	 it	 gives	 us	 two	 numbers	 in	 parentheses.	 And	 the	 first	 number	 is	 5.	 And	 you	 can
maybe	guess	because	you	know	how	many,	you	know	the	dimension,	you	know	what	we
put	in.	So	the	first	number	is	how	many	rows.

(1:22:05	-	1:22:16)

And	the	second	number	is	how	many	columns.	So	it's	5	for	the	number	of	rows,	3	for	the
number	of	columns.	That's	the	shape	of	the	data.

(1:22:17	-	1:22:30)

And	you	can	kind	of	think	that	makes	sense.	You	know,	like	if	you	imagine	it	like,	oh,	if
we	had	a	lot	of	columns	and	only	a	few	rows,	then	the	data	is	really	long.	If	we	have	a	lot
of	rows	and	only	a	few	columns,	the	data	is	long	in	a	top	to	bottom	dimension.

(1:22:30	-	1:22:41)

So	 it	does	kind	of	change	the	shape.	Or	 the	data	could	be	perfectly	square	 if	we	have
five	columns,	five	rows,	et	cetera,	et	cetera.	So	that	shape	tells	us	we	have	five	rows	and
three	columns.

(1:22:41	-	1:22:58)

Now	 you're	 like,	 well,	 Patrick,	 I	 already	 knew	 that	 because	 we	 created	 the	 data
ourselves.	But	don't	worry,	we're	going	to	be	in	a	minute	using	a	real	life	data	set	that
will	 pull	 in	much	 faster	 than	we	even	created	 this	 toy	data.	And	 that'll	 be	much	more
useful	then.

(1:22:59	-	1:23:08)

So	df.shape,	that	tells	us	the	number	of	rows	and	columns.	Let's	now	do	this.	And	this	is
honestly,	it's	the	thing	you	will	do	the	most	often	in	Pandas.

(1:23:08	-	1:23:20)

So	 pay	 attention	 to	 this.	 The	 thing	 you	will	 do	 the	most	 often	 in	 Pandas	 is	 pull	 out	 a
column	from	a	data	frame.	This	is	the	most	commonly	performed	operation	in	Pandas,	in
my	opinion.

(1:23:21	-	1:23:55)

So	df.	and	then	give	any	of	the	names.	Let's	do	our	month,	df.month.	"D-F,	dot	M-O-N-T-
H,	out	left	bracket	40,	right	bracket	colon,	zero	June,	July	1st,	September	2nd."	Reading	it
in	a	weird	way	because	it	tries,	you	know	how	screen	readers	are.	They	try	to	be	smart,
but	sometimes	they're	not	always	smart.	So	it's	like	September	2nd,	because	it's	a	two,
then	a	big	space,	and	then	September.

(1:23:55	-	1:24:22)

So	it's	 like	September	2nd,	but	 it's	kind	of	guessing	wrong,	but	that's	fine.	So	we	have
other	ways	of	doing	things	with	this,	but	the,	so	basically	what	we	did	was	we	pulled	out,
we	did	df.month.	And	what	that	gives	us	back	is	that	column	as	a	series.	And	this	is	why	I
say,	we're	not	gonna	neglect	our	series	stuff	because	now	we	can	start	combining	things
together.

(1:24:22	-	1:24:34)

So	what	if	we	do	df,	what	if	we	want	to	know	the	average	cookie	budget	for	each	month?
Okay,	 now	we're	 gonna	 combine	 a	 couple	 of	 things	 together.	 Okay,	 and	 this	 is	 called
chaining.	So	let's	do	df.

(1:24:37	-	1:24:56)

...	 Cookie	 underscore	 budget.	 "C-O-O-K-I-E,	 cookie,	 B-U-D-G-E-T."	 And	 another	 dot.
Budget,	 dot.	 So	 it's	 df.cookiebudget,	 cookie	 underscore	 budget,	 dot	 mean	 for	 the
average.

(1:24:57	-	1:25:06)

M-E-A-N	 mean,	 right	 parenthesis.	 Open	 the	 parenthesis	 and	 then	 we'll	 close	 the
parenthesis.	Do	we	have	a	question	or	anything	there?	I	heard	someone	on	the	mic.

(1:25:06	-	1:25:27)

I	think	maybe	someone	accidentally	unmuted	themselves	and	we	might've	been	hearing
a	screen	reader.	So	maybe	proceed	with	caution.	Out	left	bracket	41,	right	bracket	colon
2.8.	 So	 what	 we	 did	 there,	 and	 now	 we're	 kind	 of	 getting,	 things	 are	 getting	 a	 little
interesting	here,	right?	So	we're	combining	some	stuff	together.

(1:25:27	-	1:25:53)

We're	doing	df.cookie	underscore	budget,	dot	mean.	So	in	one	action,	we	pulled	out	the
column	and	got	the	mean	of	the	data	in	that	column,	okay?	When	you	start	combining
the	methods	one	into	the	other,	we	have	a	word	for	that	and	it's	called	chaining,	okay?
And	Pandas	has	a	lot	of	functionality	that	allows	us	to	facilitate	chaining.	That's	a	little	bit
more	for	intermediate	users,	but	it's	very	cool	stuff.

(1:25:53	-	1:26:08)

And	sometimes	you'll	just	be	like,	df.this,	dot	this,	dot	this,	dot	this.	And	you	combine	a
whole	bunch	of	things	together	and	in	one	line,	you	get	kind	of	almost	like	a	whole	little
data	analysis.	So,	and	we'll	 be	getting	by	 the	end,	maybe	 the	 last	 thing	we	do	 in	 this
workshop	will	be	kind	of	a	little	bit	of	a	longer	chain	like	that.

(1:26:09	-	1:26:18)

So,	okay.	So	that	pulls	out	the	column.	Okay,	so	we've	pulled	out	the	column	and	then
you	can	also	in	the	same	action,	do	things	to	it.

(1:26:18	-	1:26:42)

So	like	use	our	methods,	okay?	So	df.cookie	budget,	which	is	a	series.	And	then	we	can
use	a	method	that	we	normally	use	on	a	series,	 the	mean	method	 in	the	same	action,
okay?	And	 then	we	get,	 it	 smoothly	 get	 the	mean	 of	 that	 column,	which	 is	 very	 nice,
honestly.	Like,	and	how	much	typing	around	would	that	take	you	to	do	 in	Excel?	You'd
have	to	like	set	up	a	whole	thing,	you	know,	and	type	into	it.

(1:26:42	-	1:27:10)

It's	just,	you	know,	it's	very	quick.	When	you	start	getting	fast	with	this,	you	start	getting
data	 really	 fast	and	you're	kind	of	at	 your	 fingertips,	 okay?	So	what	else	do	 I	 need	 to
show	you	here	 for	data	 frames?	We	pulled	out	 the	column.	 I'm	gonna	show	you	 really
quick	how	to	pull	out	a	row,	okay?	And	then	we're	going	to	kind	of	move	on	to	the	next
thing.

(1:27:10	-	1:27:19)

Okay,	so	let's	do	df.	There's	two	ways	to	pull	out	a	row.	I	think	we're	getting	a	little	tight.

(1:27:19	-	1:27:32)

So	 I'm	gonna	only	show	you	one	of	 them,	but	 I'll	kind	of	point	 to	 the	other	one,	okay?
Two	colon	32	PM.	We're	not	doing	too	bad.	We're	actually,	so,	okay,	I'll	show	you	the	full
version	here.

(1:27:32	-	1:28:23)

I'm	sorry,	I	just	want	to	make	sure	that	we	get	to	everything.	So	what	I	want	to	show	you
is,	right	now	we	have	it	on	this	data	frame,	we	have	an	index,	but	it's	kind	of	useless.	It
just	counts	zero,	one,	 two,	three,	 four,	you	know?	So,	and	we	can	actually	pull	out	the
index	and	listen	to	what	the	index	is	by	itself	by	doing	df.index.	df.index,	no	parenthesis,
"out	 left	bracket	42	right	bracket	colon,	 range	 index	 left	paren,	start	equals	zero,	stop
equals	 five,	 step	 equals	 one	 right."	 So	 basically	 this	 says,	 it's	 a	 way	 of	 representing

counting	up.	It	says	range	index,	start	at	zero,	stop	at	four,	count	up	by	one.	Okay,	it's	a
function	that	allows	us	to	create,	and	we	can	actually	run	this	function.

(1:28:23	-	1:28:43)

It	exists	in	pandas,	range	index,	which	allows	us	to	create	like	an	index,	which	counts	up
for	 us,	 which	 is	 actually	 pretty	 useful.	 We're	 going	 to	 use	 this	 in	 one	 of	 Sarah's
workshops	 to	 create	 some	 data	 that	 we'll	 then	 use	 for	 soundification.	 But	 basically	 it
means,	okay,	right	now	the	index	counts	up	from	zero	up	to	four.

(1:28:43	-	1:28:58)

Okay?	 That's	 not	 that	 useful.	 What	 you	 want	 with	 an	 index	 is	 something	 that	 is,	 it's
ideally	it's	unique,	okay?	And	descriptive.	And	this	is	unique,	you	know,	if	each	row	has
its	own	number,	but	it's	not	descriptive.

(1:28:58	-	1:29:16)

And	when	you	 look	 for	descriptiveness,	what	you	want	 to	 think	about,	 like	what	 is	 this
row?	So	remember	columns,	they	represent	attributes	of	our	data.	So	different	facets	of
the	data.	So	for	example,	the	month,	the	cookie	budget,	the	budget,	those	are	facets	of
the	data.

(1:29:17	-	1:29:35)

The	rows,	they	represent	the,	an	entity.	So	a	specific	item	or	a	thing	or	object	or	concept
or	something,	okay?	An	entity.	And	 in	our	case,	you	know,	each,	so	each	 the	columns
they're	actually,	they're	facets	and	they're	facets	of	a	month.

(1:29:36	-	1:29:47)

Each	row	represents	a	different	month,	okay?	In	our	budget.	And	a	month	of	budget.	And
so	what	would	actually	be	most	descriptive	here	would	be	the	month.

(1:29:47	-	1:29:54)

Because,	 you	 know,	 we'll	 always	 want	 to	 know,	 okay,	 well,	 yeah,	 that's	 June's	 cookie
budget.	That's	June's	regular	budget.	So	let's	do	DF.

(1:29:56	-	1:30:19)

Let's,	what	we	want	 to	do	 is	overwrite	 the	 index	with	 the,	a	more	useful	 series,	okay?
And	so	we	can	actually	do	that	by	picking	out	a	column	and	over,	using	it	to	overwrite	it.
So	this	is	pretty	cool.	DF.index.	"DF,	dot,	I-N-D-E-X.

(1:30:19	-	1:30:21)

Index.	Space.	Equals.

(1:30:21	-	1:30:23)

Equals.	Space."	Space.

(1:30:23	-	1:30:44)

And	now	let's	do	DF.month.	"DF,	M-O-N-T-H."	So	it's	DF.index	equals	DF.month.	And	what
that	does	is	it's	just	like	variable	assignment.	What	you're	doing	is	you're	overwriting	the
index	with	another	column,	okay?	And	that	column	that	has	more	descriptive	data.

(1:30:44	-	1:30:51)

It	will	actually	keep	the	month	column.	There's	no	reason	to	get	rid	of	the	month	column.
But	from	now	on,	the	index	will	be	replaced	with	the	month.

(1:30:52	-	1:31:05)

If	 your	dataset	had	 like,	 you	know,	 if	 your	dataset	was	 longer	 than	a	year,	 you	would
need	to	have	the	year	and	the	month	to	be	the	unique	index.	But	that	would	still	be	a
great	index.	The	year	and	the	month	would	be	a	very	common	index	for	 like	a	dataset
that	involved	time.

(1:31:05	-	1:31:15)

"In	 left	bracket	44,	 right	bracket	colon."	And	 remember,	we're	assigning	something	so
we	don't	actually	get	any	output.	Remember	when	we	assign	variables	or	we	overwrite
stuff	within	data,	this	is	the	first	time	we've	done	that.

(1:31:15	-	1:31:34)

We	don't	get	an	output.	So	let's	do,	now	if	we	do	DF.index,	you	should	get	the	month.	"D-
F	 dot	 I-N-D-E-X.	Out	 left	 bracket	 44,	 right	 bracket	 colon.	 Index	 left	 paren,	 left	 bracket
June,	July,	Sep."	The	month	is	overwrote	it	correctly.

(1:31:34	-	1:31:50)

So,	okay.	And	now	if	we	look	at	the	data	frame,	DF,	the	representation.	"Out	left	bracket
45,	right	bracket	colon.	Budget,	month.	Those	are	the	columns.	Month,	June	10th.

(1:31:51	-	1:32:02)

June,	July	10th."	So,	okay.	It's	a	little	difficult	to	parse	that,	but	what	it's	saying	is	that	the
column	on	the	left,	which	is	the	index	and	the	representation	has	changed.

(1:32:02	-	1:32:36)

Okay.	Now	this	is	actually	even	more	clear.	So	now	if	you	want	to,	say	we	pulled	out	the
cookie	budget,	DF.cookiebudget.	...	So	DF.cookiebudget.	And	this	is	where	it'll	strike	you
as	a	little	more	useful	maybe.	"Out	left	bracket	46,	right	bracket	colon.	Month,	June	3rd,
July	2nd."	So	it's	saying	the	June	3rd	is	pretty	annoying.	June	3,	that's	our	cookie	budget
for	June.	July	2nd	too,	that's	our	cookie	budget	for	July.

(1:32:38	-	1:32:55)

"September	zero."	 It	said	September	zero.	"October	4th,	November	5th."	Okay.	So	 it's,
you	know,	September	zero,	October	four	and	November	five.	Okay.

(1:32:56	-	1:33:05)

So	now	we	have	our	data.	When	we	pull	out	a	column,	it	continues	to	be	labeled,	which
is	actually	really	useful	if	you're	like	reading	this	data	or	something	like	that.	You	want	it
to	continue	to	be	labeled.

(1:33:06	-	1:33:21)

So	having	a	useful	 index	 like	that	 is	very	good.	Okay.	Now,	the	 last	thing	 I'd	 like	to	do
here	is	pull	out	the,	well,	one	more	thing	I	want	to	show	you,	and	then	we're	going	to	pull
out	a	row	very	quickly	using	this	index.

(1:33:21	-	1:33:28)

And	then	I	do	want	to	move	on	to	our	big	data	set	because	that's	cool	stuff.	But	we're
going	to	be	working	with	our	big	data	set	next	week	too.	All	right.

(1:33:28	-	1:33:40)

So	what	if	we	want	to	calculate,	or	we	want	to	get	an	idea	of	how	much	we're	going	to
spend	on	cookies	each	month.	Okay.	And	this	is	very	cool.

(1:33:40	-	1:33:52)

Pandas	makes	this	very	straightforward	and	in	a	very	cool	way.	So	we	have	two	columns.
We	have	our	budget	column	and	we	have	our	cookie	budget	column.

(1:33:52	-	1:34:08)

And	what	we're	going	to	do	now	is	a	small	thing	and	it	will	tell	us	the	percentage	of	each
month	that	 is	taken	up	by	cookies	 in	that	month.	Okay.	So	we're	going	to	do	df.cookie
underscore	budget.

(1:34:12	-	1:34:51)

So	 df.cookie	 underscore	 budget	 space	 divided	 by,	 so	 I'll	 use	 slash	 for	 divided	 by

df.budget.	out	left	bracket	47	right	bracket	colon	month,	June	0.300.	0.30.	So	that's	30%.
Okay.	So	it's	a	floating	point	number	that	tells	us	out	of	one,	if	it	says	0.3,	that	means	it's
out	of	one.

(1:34:51	-	1:34:59)

So	30%	of	our	budget	is	taken	up	by	cookies	in	June.	Let's	try	it.	Let's	listen	to	July.

(1:35:00	-	1:35:20)

July,	0.20	So	0.2,	remember	that's	the	same.	If	you	convert	that	to	a	percentage,	that's
20%	of	our	budget	is	going	to	be	taken	up	by	cookies	in	July.

(1:35:20	-	1:35:31)

Let's	 do	 September.	 September,	 0	 so	 we	 didn't	 spend	 any	 money	 on	 cookies	 in
September.	That's	zero	spent	that	month	on	cookies.

(1:35:31	-	1:35:40)

Okay.	So	that's	pretty	cool.	And	that,	so,	and	it's	becomes,	it	was	made	more	useful	by
the	fact	that	we	labeled,	you	know,	we	changed	the	index	to	be	the	month.

(1:35:41	-	1:35:47)

So	now	we	can	kind	of	keep	track	of	the	months	even	as	we	do	these	operations.	Okay.
And	we've	answered	that	question	for	ourselves.

(1:35:47	-	1:36:14)

We	 were	 like,	 yes,	 what,	 what,	 you	 know,	 month	 is,	 like	 what	 month	 is	 a,	 you	 know,
September?	How	much	did	we	spend	on	cookies	or	what	percentage	of	our	budget	did
we	spend	on	cookies	in	July?	So	we	answered	that	question	for	ourselves	by	doing	this.
And	what	we	did	was,	you	know,	we	divided	one	column	by	another.	And	so	what	it	does
is	it	goes	through	and	it	goes	row	by	row	and	it	divides	each	by	each.

(1:36:14	-	1:36:29)

So	 it	 says	 cookie	 budget	 divided	 by	 budget,	 cookie	 budget	 divided	 by	 budget,	 cookie
budget	divided	by	budget.	And	then	it	gives	us	a	new	series	that	is	actually	the,	that	is
the	division	of	the	two	columns.	Okay.

(1:36:29	-	1:36:54)

And	imagine	that	would	also	take	a	ton	of	work	to	do	in	Excel,	right?	I	mean,	if	you	were
going	to	make	a	new	column	and	also	very	error	prone,	I've	never	done	something	like
that	without	creating	a	ton	of	errors	and	stuff	like	that.	So,	and	we're	not	going	to	do	it	in

the	 interest	of	 time,	but	you	can,	now	I	could	take	this	series	and	add	 it	back	 into	our
data	 frame	as	a	new	column,	which	would	be	 like	percentage,	we	could	call	 it	budget
percentage	on	cookies	or	something.	And	we	can	add	it	back	in.

(1:36:54	-	1:37:04)

I	won't	do	it	now	in	the	interest	of	time.	Okay.	And	one	last	thing	I	promised	I'd	show	you
is	what	if	we	want	to	plot	only	the	data	for	September,	for	example.

(1:37:05	-	1:37:10)

So	we	could	do	df.	...	Dot.

(1:37:10	-	1:37:19)

...	L-O-C.	"Dot.	L-O-C.	For	location.	And	then	open	square	bracket.

(1:37:20	-	1:37:26)

L-O-C."	Quote	September.	"Quote.	...	Quote.	September.

(1:37:28	-	1:37:30)

"Quote.	Right	bracket."	Close	square	bracket.

(1:37:30	-	1:37:33)

So	it's	df.	L-O-C.	Open	square	bracket.

(1:37:33	-	1:37:34)

Quote.	September.	Quote.

(1:37:34	-	1:37:38)

Close	square	bracket.	"Out	left	bracket.	48.

(1:37:39	-	1:37:42)

Right	bracket.	Colon.	Budget	five.

(1:37:43	-	1:37:47)

Cookie	line	budget	zero.	Month	September."	So	the	month	is	September.

(1:37:48	-	1:37:54)

Remember	our	cookie	budget	for	September	is	zero.	It's	a	very	sad	month.	And	then	the
budget	is	five.

(1:37:56	-	1:38:14)

Very,	pretty	cool,	right?	So	the,	and	that	is	another	series.	And	when	you	do,	when	you
pull	out	a	row,	 it	gives	you	a	series	where	the	 index	 is	a,	 is	 the	column	name	and	the
value	is	the	actual	value	of	that	data.	Okay.

(1:38:14	-	1:38:23)

So	if	you	imagine	in	your	mind,	in	your	mind,	just	lifting	out	the	row.	Okay.	We	have	our
row.

(1:38:23	-	1:38:38)

Imagine	it	kind	of	flying	out	of	the	data	frame.	And	then	we	only	have	that	data	now.	So
it	then	takes	 it	and	 it	says,	okay,	what	were	the	column	names?	 It	 turns	 it	around	and
says,	what	were	the	column	names?	Okay.

(1:38:39	-	1:38:49)

And	now	the	column	names	become	the	index.	Okay.	So,	and	so	they	tell	you	what	that,
you	know,	it	gives	you	a	nice	little	label	for	that	particular	item	of	data.

(1:38:49	-	1:38:56)

So	 in	 this	 case,	 it	 was,	 our	 budget	 was	 $5.	 We	 didn't	 have	 that	 much	 money	 in
September.	So	we	weren't	able	to	spend	any	money	on	cookies.

(1:38:56	-	1:39:12)

Okay.	Now	we	really	will	move	on.	There's	also	a	df.iloc,	which	we	won't	try	out,	but	that
will	tell	you	if	you	know	the	number	of,	you	know,	where	in	the	data	set	it	is,	regardless
of	what	the	index	is.

(1:39:12	-	1:39:22)

So	you	can	pull	out	the	first	item	by	doing	df.iloc	zero,	and	that	would	pull	out	the	first
item,	no	matter	what	the	 index	 is.	So	that's	df.iloc	 for	 index	 location.	That's	what	they
named	it.

(1:39:22	-	1:39:27)

Okay.	So	that's	another	useful	one	that	we	won't	do.	Cause	I	do	want	to	pull	in	this	data
set	really	quick.

(1:39:30	-	1:39:33)

...	I	think	we're	actually	going	to	be	good.	Okay.

(1:39:33	-	1:39:48)

So	 now	we're	 going	 to	 do	 another	 cool	 thing.	 I	 hope	 that	 this,	 I	 feel	 like	 this	 little	 bit
should	be	a	little	bit	exciting	for	you	guys.	So	what	we're	going	to	do	is,	we're	going	to,
we're	done	with	this	data	frame,	but	we're	going	to	produce	a	new	data	frame	with,	it's	a
real	data	set.

(1:39:48	-	1:40:02)

So	what's	 that	we've	 done	 so	 far	 is	 toy	 data,	 right?	 It's	 data	we	made	up.	Now	we're
going	to	work	with	data	that	actually	reflects	something	in	the	real	world.	So	what	I	want
you	to	do	is	type	d,	I'm	going	to	clear	the	screen	because	we're	starting	something	new,
and	we're	going	to	overwrite	our	df	variables.

(1:40:03	-	1:40:40)

So	you	can	kind	of	say	goodbye	to	the	df	variable	that	we	made	that	you	worked	so	hard
on.	So	I'm	sorry	for	that.	We'll	do	df	equals,	"df	equals	space"	equals	space,	pandas,	"p-
a-n-d-a-s,	 pandas,"	 read	 underscore	 csv,	 "r-e-a-d,	 read,	 c-s-v,"	 and	 then	 open,	 open
parenthesis,	"csv,"	okay,	"left	paren"	quote,	and	then	we	do,	I'm	going	to	give	you	a	URL.

(1:40:41	-	1:42:15)

So	it's	going	to	be	http,	...	colon,	"h-t-t-p,"	slash,	slash,	bit.ly,	for	a	short,	this	is	a	short,	a
URL	shortening	service,	...	"bit,	dot,	l-y,"	forward	slash,	...	n-y-c-b-n-b,	for	n-y-c-b-n-b,	"n-
y-c-b-n-b,"	and	I'll	go	over	this	again,	n-y-c-b-n-b,	and	then	close	the	parenthesis,	"right
paren,"	I'm	going	to	make	sure	it	worked	for	me,	and	then	I'm	going	to	explain	it	again.
...	pandas,	dot	read,	that	was	the
longest	three	seconds	of	my	life.	Okay,	so,	what	did	we	do	there?	So	we	do,	we	typed	df,
for	 our	 new	 data	 frame	 variable,	 equals,	 pandas,	 dot	 read,	 underscore,	 csv,	 r-e-a-d,
underscore,	csv,	open,	parenthesis,	quote,	and	then	we	have	a	URL.

(1:42:15	-	1:42:55)

So	it's	going	to	be,	h-t-t-p,	colon,	slash,	slash,	bit,	dot	l-y,	b-i-t,	dot	l-y,	forward	slash,	n-y-
c,	New	York	City,	 b-n-b.	 So	 it's	 n-y-c-b-n-b,	 okay?	And	helpers	 can,	 one	of	 the	helpers
copy	the	line	and	paste	it	into	the	chat,	and	no	shame	in	copying	this	one,	because	it's
the	URL,	okay?	 I	 tried	 to	make	 it	 simple	 so	people	 could	 type	 it	 if	 they	didn't	want	 to
copy.	 I	 know	 copying	 can	 sometimes	 be	 clunky,	 but	we	 do	 have	 it	 right	 there	 in	 the,
hopefully	 someone	will	 share	 it	 in	 the	chat,	okay?	So	df	equals,	pandas	dot	 read,	 csv,
and	then	a	URL.

(1:42:55	-	1:43:12)

What	is	this	doing?	I've	prepared	a	dataset	at	that	URL,	which	is	a	commas,	it's	basically

a	spreadsheet.	It's	commas	separated	values	data.	So	it's	a	spreadsheet	that	I	uploaded
to	 that	URL,	 and	pandas	 very	 neatly	 reads	 it	 in	 and	 imports	 it	 all	 into	 our	DataFrame
variable,	which	is	pretty	cool.

(1:43:13	-	1:43:26)

So	 in	 that	 little	 line,	we	created	a	new	DataFrame,	and	we're	going	to	 learn	a	 little	bit
about	it.	So	let's	run	through	really	quick,	because	we're	just	reviewing.	So	I'm	going	to
run	through	really	quick	some	of	the	stuff	you	would	do	when	you	get	your	hands	on	a
new	DataFrame.

(1:43:27	-	1:43:51)

Hopefully	you	guys	are	being	able	to	import	the	DataFrame,	okay?	Remember	it's	bit.ly
forward	slash	NYCBNB,	okay?	B	as	in	Bravo,	N	as	in	November,	or	B	as	in	Bravo,	okay?
Let's	do	df.	So	I'm	going	to,	now	I'll	do	the	representation,	but	it's	not	going	to	be	that
helpful.	Remember	our	representation	is	kind	of	overwhelming.

(1:43:51	-	1:44:03)

So	 let's	 just	 do	df.	 df,	 "out	 left	 bracket	 51,	 right	 bracket	 colon,	 48,891."	Did	 you	hear
that?	48,891.

(1:44:03	-	1:44:34)

So	that's,	we're	going	to	talk	about	this	in	a	minute,	but	we	don't	know	what	that	is	yet,
actually,	 but	 we're	 going	 to	 confirm	 in	 a	 minute.	 Something's	 there.	 "36485057,	 36,
48,892,	36485431."	My	question,	you're	probably	 like,	what	the	hell?	 It's	 just	basically,
it's	just	printing	out	random	stuff.	That's	because	what	we	have	now	is	a	big	DataFrame,
and	it	has,	well,	I'm	going	to	tell	you	now	how	big	it	is.	So	it's	going	to	be,	how	do	we	tell
how	 big	 it	 is?	 We	 don't	 just	 look	 at	 the	 representation	 because	 that's	 too	 much
information.

(1:44:34	-	1:45:21)

It's	not	useful.	Let's	do	df.shape.	"df.shape,	S-H-A-P-E,"	no	parenthesis.	"Out	left	bracket
52,	right	bracket	colon,	left	paren,	48,895."	So	this	has	48,895	rows,	each	representing
an	Airbnb	listing,	and	it	has	16	columns,	okay?	So	this	is	a	big,	it's	not	big	data	because
it	still	runs	in	our	computer	or	whatever,	but	it's	a	much	bigger	data	set	than	we've	used
so	 far.	And	 it's	 real	data,	okay?	This	 is	all	Airbnb	data	 from	New	York	City	 in	2019.	So
pre-pandemic,	pre-recent	reform	of	Airbnbs	in	New	York	City.

(1:45:22	-	1:45:37)

And	so	it	represents	actual	data	from	that	year	that	we	can	look	at.	What's	the	first	thing
we're	going	 to	want	 to	do	after	we	 find	out	 the	size	of	 it?	And	 it	 is	useful	 to	know	the

size.	We	have	16	columns	to	work	with	and	we	have	almost	50,000	rows,	okay?	Let	me
just	double	check	the	time.

(1:45:38	-	1:45:54)

"2	colon	50	PM."	We're	going	to	do	some	cool	stuff.	Okay,	so	what	we	want	to	do	is	we
want	 to	know	what	 the	columns	are,	okay?	Because	 then	 the	columns	will	 tell	us	how
much,	what	kind	of	data	we	have	to	work	with,	okay?	So	we	want	the	column	names.

(1:45:54	-	1:46:26)

And	pretty	much	if	you're	working	with	a	new	data	set,	you're	going	to	do	this	in	more	or
less	 this	order.	 You're	going	 to	want	 to	know	how	big	 is	 the	data	 set	 in	 terms	of,	 you
know,	X	and	Y,	rows	and	columns,	how	many,	and	also	the	second	thing	you're	going	to
want	to	know	is	what	is	the	data	we	have,	which	the	column	names	will	tell	you.	So	let's
do	df.columns,	okay?	df.columns.	df.columns.	And	there	are	a	lot	of	these,	so	we'll	listen
to	some	of	them.

(1:46:26	-	1:47:12)

"Neighborhood,	 latitude,	 longitude,	room	line	type,	price,	minimum	line	nights,	number
line	of	 line	R,	 reviews,	 last	 line	 review,	 reviews	 line	per	 line	month,	 calculate,"	 and	of
course	the,	it's	New	York	City,	there	has	to	be	a	car	alarm	going	off	outside,	but	you're
getting	a	little	local	flavor.	But	okay,	so	we	have,	in	our,	so	now	we	have	our,	that	is	very
annoying.	Okay,	 so	we	pulled	out	our	column	names	and	 I	would	say	 there's	a	couple
that	stood	out	to	me,	okay?	That's	df.

(1:47:15	-	1:47:25)

Oh	 my	 God.	 df.theprice,	 that	 stood	 out	 to	 me	 as	 being	 really	 interesting.	 I'm	 always
attracted	to	stuff	like	price,	okay?	So	that's	some	interesting	numerical	data.

(1:47:26	-	1:47:49)

We	have	df.neighborhood,	that	probably	tells	us	the	different	neighborhoods	in	New	York
City,	which	is	pretty	cool.	And	then	there's	a	couple	of	other	ones	that	stood	out,	maybe
minimum	nights.	 But	 the	 other	 one	 that	 I	 found	 really	 interesting	was	df.name,	 okay?
And	so	each	of	these	represents	a	different	kind	of	data	and	df.price	is	numeric	data,	it's
an	integer.

(1:47:50	-	1:48:24)

And	 then	 the	 df.name,	 we	 can	 check.	 Let's	 check	 these	 really	 quick.	 So	 df.price.
"48,890.70."	...	So	I	heard	the	word,	I	heard	70	there	and	48,890,	that's	the	index.	And
then	70	is	the	price.	So	it's	telling	us	integers,	so	it's	numeric	data	of	some	kind,	okay?
And	we	 could	 do	 that	with	 name	and	 in	 the	 interest	 of	 time,	 I'll	 tell	 you,	 name	 is	 the

name	of	the	listing	as	it	appears	in	Airbnb,	which	is	really	interesting,	textual	data.

(1:48:24	-	1:48:59)

And	 then	 the	 neighborhood,	 it's	 kind	 of	 like	 grouped	 data,	 which	 we'll	 get	 into.	 It's	 a
special	kind	of	data	called	categorical	data	that	we'll	talk	about	next	week,	okay?	But	for
now,	what	I'd	like	to	be	interested	in	is	let's	figure	out	a	little	bit	about	the	price,	okay?
So	what,	first	of	all,	I'd	like	to	know	what	is	the	average	price	of	an	Airbnb	in	New	York
City?	So	 it	would	be	df,	 and	we	kind	of	did	a	 little	bit	 of	 this	before,	df.price.mean.	 ...
Remember,	this	is	a	real	data	set	and	we're	running	this	over	almost	50,000	rows.

(1:48:59	-	1:49:08)

We're	getting	the	mean	of	almost	50,000	rows.	"Out	left	bracket	55,	right	bracket	colon
152	points."	So,	okay,	152.

(1:49:08	-	1:49:23)

So	the	average	price	of	an	Airbnb	per	night	in	New	York	City	in	2019	is	a	little	over	$150.
And	that	sounds	really	high.	So	maybe	you're	like,	oh,	wow,	like	New	York	is	expensive
as	I	have	heard.

(1:49:24	-	1:49:58)

But	 before	 we	 make	 any	 judgments,	 let's	 also	 try	 the	 median.	 So	 let's	 do	 df.mean,
df.price.mean.	"df,	dot	price,	dot	...	right	paren.	So	df.price.median.	Out	left	bracket	56,
right	bracket	colon	106.0."	106.0.	So	the	average	was	almost	a	 little	over	150	and	the
median	was	only	106.

(1:49:58	-	1:50:11)

So	this	is	interesting,	right?	And	maybe	you're	like,	oh,	that's	interesting.	That	sounds	a
little	more	 reasonable.	 I	mean,	maybe	 it	 still	 sounds	expensive	 to	you,	but	you're	 like,
oh,	that's	actually	less	than	I	expected	from	the	average.

(1:50:12	-	1:50:27)

So	this	actually	does	tell	you	something.	And	this	is	the	kind	of	thing	you	learn	as	you	do
more	with	data	science.	When	you	look	at	the	mean	and	the	median	and	the	median	is
significantly	lower	than	the	mean,	it	tells	you	something	about	the	shape	of	the	data.

(1:50:28	-	1:50:38)

And	they	call	this	right	skewed	data.	This	specific	situation	is	called	right	skewed	data.
And	what	that	means	is	there's	a	couple	of,	there's	some	items	in	the	data	set	that	are
bringing	up	the	average.

(1:50:39	-	1:50:51)

So	some,	in	this	case,	very	expensive	items.	And	I'll	draw	you	an	analogy.	Like	imagine
all	of	us	together,	we	imagine	each	of	our	incomes,	right?	So	imagine,	and	we	probably
all	have	fairly	normal	incomes.

(1:50:51	-	1:50:58)

Maybe	 some	 of	 us	 are	 whatever,	 you	 know,	 I	 don't	 know.	 Maybe	 there's	 some
millionaires	here.	We	say	we	all	have	pretty	normal	incomes,	right?	All	of	us	who	are	in
this	workshop.

(1:50:59	-	1:51:13)

And	we	collect	us	all	together	in	a	data	set.	So	our	data	set	is	all	of	our,	or	let's	say	our
wealth,	okay?	Okay,	so	we	have	each	of	our	individual	net	worth	or	whatever.	And	then
we	take	someone	like	Jeff	Bezos	or	something	like	that.

(1:51:13	-	1:51:29)

Someone	who	has	a	gazillion,	 trillion,	billion	dollars,	okay?	And	we	add	 Jeff	 to	the	data
set,	 Jeff	Bezos,	Mr.	Bezos.	Suddenly	 the	average	 in	 that	data	set	 is	gonna	shoot	up	by
like	probably	more	than	a	billion.	I	think	there's	something	like	50	people	in	this	room.

(1:51:30	-	1:51:41)

Jeff	Bezos	 is	definitely	worth	more	 than	$50	billion.	So	 the	average	 is	gonna	go	up	by
more,	at	least	a	billion	dollars.	However,	the	median	will	only	go	up	very	slightly.

(1:51:42	-	1:51:56)

And	that,	why	 is	that?	That	 is	because	the	mean,	the	average	 is	very	sensitive	to	high
numbers	 that	 kind	of	 like	outliers	 that	 throw	 it	 off.	Whereas	 the	median	 is	 the	middle
most	number.	So	the	middle	most	number	 in	the	Jeff	Bezos	example	didn't	change	too
much.

(1:51:56	-	1:52:29)

So	the	median	often	tells	you	more	about	the	most	representative	data	in	certain	data
sets.	Whereas	 the	 average	 is	 kind	 of	 like	 tells	 you	 it's	 a	 little	more	 thrown	 off	 by	 big
numbers	that	are	included	or	big	outliers,	okay?	In	cooperation	with	each	other,	when	we
run	on	both	of	them,	we	kind	of	configure	and	some	people,	a	sighted	person	might	try
to	 learn	 this	kind	of	 information	by	creating	a	bar	graph.	And	 then	 the	sighted	person
would	see	visually	that	there's	a	whole	bunch	of	big	values	at	the	end	of	the	data	sets.

(1:52:29	-	1:52:43)

But	we	can	also	make	that	intuition	based	on	the	mean	and	the	median,	which	is	these
kind	of	statistical	numbers	that	we	can	use.	And	now	let's	kind	of,	this	will	be	kind	of	the
last	thing	we	do	in	the	workshop.	I	kind	of	want	to	tell	you	what	we're	doing	next	time.

(1:52:43	-	1:52:52)

And	I'll	give	you	a	little	kind	of	philosophy	of	the	non-visual	stuff	before	we	go.	But	this	is
the	last	Python	we'll	do.	Let's	confirm	our	hypothesis.

(1:52:52	-	1:53:26)

So	 our	 hypothesis	 is	 that	 there's	 a	 few	 very	 large	 values	 in	 this	 data	 set	 that	 are
throwing	 off	 our	 analysis,	 but	 that	 are	 not	 kind	 of	 skewing	 the	 data	 over	 toward	 the
expensive	side.	So	let's	do	df.price.sort	underscore	values.	So	that	sorts	the	price	from
least	to	greatest.

(1:53:26	-	1:54:05)

Now	I'm	going	to	run	this,	and	then	I'm	going	to	tell	you	to	add	something	to	the	end	of
it,	 but	 I'm	going	 to	 run	 it	 really	quick.	 "40,433,	9,999.	12,342,	9,999."	So	 that	 tells	us
right	there.	So	it's	actually,	it's	telling	us	from	highest	to	lowest.	So	I	heard	there,	oh,	you
know	what	 it	 is?	What's	confusing	here	 is	that	what	Pandas	usually	outputs	 is	 it's	 from
the	least	to	the	greatest,	and	it	prints	out	the	first	five	of	the	least,	then	it	skips	all	the
rest	of	the	data,	then	it	prints	the	last	five.

(1:54:05	-	1:54:31)

But	because	I	made	the	text	so	big	in	this,	it's	only	printing	out	the	last	five,	even	though
it's	supposed	to	print	out	all	of	it,	okay?	So	it's	being	a	little	deceptive	here,	and	it's	only
because	of	me	magnifying	this	command	line	environment	so	much,	okay?	It's	printing
out	the	last	five,	but	really	what	it	tries	to	do	is	print	out	the	first	five	and	the	last	five.	So
what	 I	 want	 you	 to	 do	 is,	 so	 it'll	 work	 on	 your	 computer	 because	 you	 may	 not	 have
magnified	to	the	same	extent.	Press	up.

(1:54:32	-	1:54:55)

"In	 left	bracket	58,	 right	bracket	colon,	df.price.sortline	values	 left	paren,	 right	paren."
Add	to	the	end	of	that.	"In	left	bracket."	Add	to	the	end	of	that	dot,	dot	tail,	T-A-I-L,	open
parenthesis,	 close	 parenthesis.	 "T-A-I-L,	 left	 right	 paren."	 So	 now	we're	 chaining	 three
dots	together.

(1:54:57	-	1:55:09)

"Out	left	bracket	58,	right	bracket	colon,	colon,	 left	paren,	right	paren.	Out	left	bracket
58,	right	bracket	colon."	So	this	is	just	a	bunch	of	preamble.

(1:55:09	-	1:55:43)

We	haven't	gotten	to	the	data	yet.	"40,433,	9999.	Name	colon,	price,	type	colon."	So	it
printed	out	 the	 last	 five	and	basically	 it	 says	 there	are	a	bunch	of	 them	with,	we	 can
review	to	see,	but	there	are	a	bunch	that	are	9,999	and	a	couple	that	are	10,000.	"Blank.
Name	colon,	29,238,	10,000.

(1:55:46	-	1:55:54)

9,151,	10,000.	17,692,	10,000."	So	there's	three	at	least	that	are	10,000.

(1:55:54	-	1:56:04)

And	 then	 I	 know	 from	experience.	12,342,	9,999.	Okay,	 so	we	have	a	whole	bunch	of
really,	and	probably	there's	some	weird	reason	those	are	in	the	dataset.

(1:56:04	-	1:56:16)

Probably	 people	 aren't	 really	 paying	 10,000	 for	 their	 rooms.	 They're	 probably	 doing
something	 like	 jacking	 up	 the	 price	 temporarily	 or	 something	 like	 that	 so	 that	 people
don't	rent	the	room	in	some	day	that	they	want,	or	something	like	that.	Something	weird
is	going	on	there.

(1:56:16	-	1:56:30)

And	 that's	why	 I	 say	 the	 logic	and	 the	 context	 sensitiveness	 comes	 in	when	you	 start
looking	at	that	real	life	data	like	this,	which	we'll	do	more	next	time.	But	now,	and	that
last	one's	kind	of	cool.	So	what	we	did	was	we	did	df	or	data	frame.

(1:56:31	-	1:57:07)

We	pulled	out	the	column,	df.price.	Then	we	sorted	the	values	in	the	column.sortValues.
Then	 we	 pulled	 out	 the	 last	 five	 so	 we	 could	 get	 an	 idea	 of	 what	 the	 last	 five	 most
expensive	 items	are.	Okay,	so,	and	this	 is	kind	of,	as	we	go	 in	pandas,	you'll	see	we'll
sort	of	chaining	and	chaining	and	chaining	and	combining	together	more	and	more	items
like	 this.	Okay,	so	 I	kind	of	 just	want	 to	say	 that	 just	 for	 the	 little	bit	of	 the	non-visual
philosophy	before	we	get	into	the	next	workshop.

(1:57:07	-	1:57:25)

And	we're	basically	done	with	the	Python	here.	So,	but	it's	really	important	when	you're
a	screen	reader	user	to	control	how	much	information	is	coming	to	you	and	exactly	what
information.	And	luckily	this	environment	that	we're	in	and	pandas	really	does	give	you
full	control	over	that.

(1:57:26	-	1:57:49)

Okay,	and	in	fact,	I	would	say	we	as	non-visual	people,	we're	not	really	at	that	as	much
of	a	disadvantage	as	you	would	think	 in	terms	of	doing	things	totally	non-visually.	And
that	is	because,	for	example,	when	a	sighted	person	prints	out	that	data	frame,	the	data
is	too	big	to	look	at	visually	anyway.	There's	16	rows,	there's	50,000,	oh,	sorry,	50,000
rows,	there's	16	columns.

(1:57:49	-	1:57:59)

It's	 just	 too	much	to	 look	at	as	a	practical	matter.	And	 in	 fact,	pandas	knows	this.	And
when	a	sighted	person	prints	out	a	data	frame	that's	long	like	this,	it	just	shows	the	first
five	rows.

(1:57:59	-	1:58:17)

I	dot,	dot,	dot,	and	the	 last	 five	 rows	because	 it	knows	 it's	not	useful.	And	my	sighted
students	often	ask	me,	hey,	how	do	 I	change	 it	 to	see	all	 the	rows?	Because	they	 just
wanna	go	looking	through	the	data.	And	I	say,	 it's	actually,	no,	do	not	do	that	because
you	too	will	become	overwhelmed.

(1:58:18	-	1:58:55)

They	need	to	 learn	the	same	thing	that	 I'm	showing	you,	which	 is	to	pull	out	the	most
specific	information	that	they	can	and	to	be	efficient	that	way.	I	would	also	say	that	the
other	 thing,	 and	 we're	 gonna	 get	 more	 into	 this	 next	 time.	 And	 we	 only	 kind	 of
scratching	the	surface	of	it	here	by	learning	some	of	the	fundamentals,	but	that	what	I'm
gonna	try	to	show	you	is	that	there	are	ways	of	working	with	the	data	that	will	give	you
the	same	 information	or	 it's	very	similar	 information	 that	a,	say	a	pie	chart,	bar	chart,
line	chart	would	give	you.

(1:58:55	-	1:59:24)

But	instead	of	using	a	visual	app,	a	visual	approach,	we	use,	we	try	to	explore	the	data
by	having	a	conversation	with	the	data,	by	being	like,	oh,	the	median	is	this.	Well,	that
makes	me	curious	about	the	mode.	What's	the	most	common	value	in	there?	And	then
you	build	up	a	mental	model	of	 the	dataset	 in	your	mind,	but	without	 like	 that	kind	of
visualization	approach.

(1:59:25	-	1:59:39)

And	 it's	 very,	 it's	honestly,	 it's	 very	practical.	 It	 really	 can	build	up	a	mental	model	of
your	data	through	this	conversational	method.	I'm	not	gonna	say	it's	gonna	be	exactly	as
good	 all	 the	 time,	 but	 then	 we	 also	 have	 sonification,	 which	 we'll	 do	 in	 the	 last	 two
workshops.

(1:59:40	-	1:59:52)

So	we	can	access	some	of	that	condensed	information	that	some	people	get	in	a	chart.
Okay,	so	that's	my	pep	talk	for	next	time.	We're	gonna	learn	some,	we're	gonna	lean	into
this	conversational	style	with	the	data.

(1:59:53	-	2:00:26)

We're	gonna	do	this	exploratory	data	analysis	to	get	a	feel	for	this	dataset	and	to	answer
some	actually	quite	specific	questions.	Like	 for	example,	what's	 the	neighborhood	with
the	most	expensive	apartments	and	so	on,	okay?	We're	gonna	all	do	that	next	time.	For
people	who	are	feeling	adventurous	this	week,	between	now	and	Tuesday,	I	have	in	the
curriculum,	in	addition,	in	the	curriculum,	I	have	added	a	challenges	section	to	the	end.

(2:00:27	-	2:00:55)

So	it	has	three	little	challenges.	They	only	use,	or	they	can	be	completed	with	items	that
we	learned	in	this	tutorial.	There	may	be	easier	ways	to	do	it	to	solve	those	challenges
and	pandas,	but	you	can	definitely	solve	them	with	the	methods,	attributes,	techniques,
and	everything	we've	learned	in	this	tutorial,	okay?	And	they're	like	real	questions	about
the	 data,	 this	 dataset	 that	 you	 can	 try	 to	 figure	 out	 if	 you	want	 to	 challenge	 yourself
between	now	and	Tuesday.

(2:00:55	-	2:01:13)

Okay,	 and	 I'll	 also	 say	 maybe	 just	 cause	 you're	 not,	 maybe	 it's	 not	 something	 you're
used	to,	the	curriculum	that's	been	created	for	the	first	and	second	workshops,	they've
really	 been	 designed	 for	 independent	work.	 So	 if	 you	 haven't	 looked	 at	 them,	 they're
very	 descriptive.	 I'd	 say	 they	 actually	 have	 more	 information	 in	 them	 than	 I	 can	 get
across	to	you	in	the	workshops.

(2:01:14	-	2:01:28)

And	they're	very	talky,	 just	 like	 I'm	talky,	and	conversational.	So	they're	not	 just	 like	a
dump	of	the	information	in	this	workshop.	They're	actually	 like	designed	so	people	can
follow	along	independently	and	without	even	looking	at	these	workshops.

(2:01:28	-	2:01:40)

So	if	you	haven't	looked	at	those	as	a	resource,	they're	there	for	you.	If	you're	feeling	a
little	overwhelmed,	you	wanna	review.	And	then	finally,	if	you	wanna	kind	of,	you	know,
drop	off	the	meeting	or	whatever,	I'm	just	gonna	talk	about	procedural	stuff	now.

(2:01:40	-	2:01:52)

On	Thursday,	we	will	be,	have	another	office	hours.	And	every	week	after	the	Tuesday
workshop,	we'll	have	a	Thursday	office	hours.	It's	at	the	same	time	during	the	day.

(2:01:52	-	2:02:15)

So	it's	1	p.m.	Eastern	time,	6	p.m.	Grand	Meridian	time,	or	GMT,	okay?	And,	and	thank
you.	 I'll	 stop	 the	 recording	 there.	 And	 I'm	 gonna	 stick	 around	 for	 questions,	 okay?
Actually,	if	people	have	questions	about	the	data	science	portion,	I'll	leave	the	recording
running	so	people	can	benefit	from	that.

(2:02:16	-	2:02:41)

So	 thank	you	all	 and	have	a	great	day.	Okay,	 so	helpers,	were	 there	questions	 in	 the
chat	that	came	up	that	would	be	good	to	address?	Or	does	someone	wanna	get	on	the
mic	and	ask	a	question?	Let's	see.	I	think,	I	think	just	if	anyone	wants	to	hop	on	the	mic.

(2:02:42	-	2:02:53)

Just	to	be	clear,	I	wanted	to	make	sure,	people	have	permission	to	leave	now.	If	you're
worried	about	social	permission	to	leave,	you	have	permission	to	leave	now.	This	is,	this
is,	you	know,	even	more	optional	than	the	workshops.

(2:02:53	-	2:03:02)

Just	 wanna	 make	 sure	 that's	 clear.	 Sorry,	 we	 have	 a	 question	 from	 Liam.	 Can	 we	 go
through	saving	this	as	a	file	like	last	time?	So	I	believe	the	iPython	session.

(2:03:08	-	2:03:11)

There	 were	 my	 headphones	 fell	 out	 there	 and	 I	 didn't	 hear	 you.	 I	 didn't	 hear	 it.	 So	 I
wonder	if	you	could.

(2:03:12	-	2:03:15)

Sorry	about	that.	We	have	a	question	from	Liam	now.	I'm	waving	my	hands	around.

(2:03:17	-	2:03:23)

Oh,	 can	 you	 still	 not?	 Oh,	 are	 your	 headphones	 still	 not	 on?	 I	 can	 hear	 you	 now.	 Oh,
okay.	Whoops,	okay,	whoops.

(2:03:23	-	2:03:30)

Okay.	 Liam	 asks,	 can	 we	 go	 through	 saving	 this	 as	 a	 file	 like	 last	 time?	 So	 I	 believe
saving	the	iPython	session.	Yes,	okay.

(2:03:30	-	2:03:39)

That's	great	 to	 review	and	 thank	you,	 Liam.	Okay.	So	 to	 save,	we	use	what's	 called	a
iPython	magic	command.

(2:03:39	-	2:03:44)

Okay.	Those	all	start	with	a	percentage	sign.	Okay.

(2:03:44	-	2:04:05)

So	the	first	thing	you	have	to	do	is	you	have	to	know	what	the	last	line,	the	number	of
the	last	line	you	input	was,	because	we'll	need	that	for	this	command.	So	I'm	just	going
to	press	enter	so	I	can	hear	my	input.	"In	left	bracket	59,	right	bracket."	So	I	heard	59.
So	that	means	we've	entered	58	lines	of	code.	So	we	want	to	save	from	one	to	58.

(2:04:06	-	2:04:21)

It's	kind	of	annoying	that	it	makes	us	put	that	in,	but	it's	just	how	it's	designed.	I	want	to
do	a,	maybe	I'll	do	a	pull	request	and	be	like,	it's	supposed	to	actually	save	everything
by	default,	but	there's	a	bug	where	it	doesn't.	All	right,	so	let's	do	%save.

(2:04:23	-	2:04:37)

"%save."	Space.	"Save."	And	then.	Space.	And	then	now	we	want	to	put	 in	a	file	name
and	it	will,	if	you	don't	put	a	.py	at	the	end,	it	will	add	the	.py	for	you.

(2:04:37	-	2:04:56)

So	what	will	be	created	is	going	to	be	a	Python	text	file,	a	.py	file,	which	is	a	text	file	with
Python	code	in	it.	But	I'm	going	to	call	this	pandas.	"P-A-N-D-A-S."	Pandas.	"F-U-N-D-A-M-
E-N-T-A-L-S."	I	just	called	it	pandas	underscore	fundamentals.

(2:04:57	-	2:05:03)

And	I	didn't	put	the	.py	because	it	will	add	that	for	us.	"Fundamentals."	So	it's	%save.

(2:05:03	-	2:05:05)

Sorry.	%save.	Space.

(2:05:05	-	2:05:11)

Pandas	underscore	fundamentals.	And	then	we	have	another	space.	Then	one.

(2:05:11	-	2:05:13)

Number	one.	One.	Hyphen.

(2:05:13	-	2:05:17)

One.	Two.	58,	I	think	was	the	number.

(2:05:17	-	2:05:22)

Five.	Eight.	Let	me	just,	I	think	that	hyphen.

(2:05:23	-	2:05:30)

"158	is	neither	a	string	nor	a	macro."	Yeah,	I	didn't.	"58.	Five."	I	didn't	properly	put	the
hyphen	in.	Dash.

(2:05:30	-	2:05:32)

"Five.	Eight.	D-F.

(2:05:33	-	2:05:53)

D-F	 dot	 shape."	 And	 what	 gets	 printed	 out	 is	 all	 the,	 so	 what	 gets	 printed	 out	 to	 the
screen	 here,	 and	 what	 we're	 hearing,	 is	 all	 of	 the	 stuff	 that	 we	 have	 done	 in	 the
workshop.	 But	 it	 actually,	 it	 should	 have	 put	 it	 in	 the	 file,	 okay?	 And	 we	 can	 actually
check	that	using	another	magic	command.

(2:05:53	-	2:06:02)

So	 I'll	 double	 check	 it.	 "Percent.	 ...	 L-S."		 And	 I	 call	 that	 pandas	 underscore
fundamentals.

(2:06:03	-	2:06:23)

...		 "Volume	 in	drive	C	has	no	 label.	Volume	serial	number	 is	36F6-B."	Okay,
printing	out	a	lot	of	stuff	from	the	review.	"Volume	in,	in	left,	volume,	blank,	directory	of
C,	blank,	file	not	found."	Oh,	cause	it	made	it	a	dot	P-Y	file.	Well,	whatever,	don't	worry.
It	did	save	it	anyway.

(2:06:23	-	2:06:34)

Let's	 just	 not	 get	 too	 deep	 into	 that.	 But	 there's	 ways	 to	 check	 if	 the	 file	 is	 actually
created.	But	you	can	go,	by	default,	it	will	save	it	in	your	users	folder	and	your	name.

(2:06:35	-	2:07:01)

So	 if	 your	name	 is	 Liam,	 it	would	be	users	 forward	 slash	or	backslash	Liam.	Then	you
have	 to	 look	 in	 that	 folder	 in	whatever	 the	Windows	Navigator,	whatever	 they	call	 the
program	 where	 you	 look	 at	 the	 files	 and	 folders,	 and	 you	 should	 see	 a	 file	 in	 there,
whatever.py,	whatever	you	gave	it.	Sorry.

Thanks	 for	 asking	 that	 because	 it's	 useful	 to	 review	 and	 people	 like	 to	 save	 their
sessions.	Now,	I	can	share	this	with	people	if	they	ask	for	it,	so	that's	also	good.	I	might
have	forgotten.

(2:07:03	-	2:07:23)

Anyone	else	have	a	question?	Yeah.	Hi.	I	have	two	questions.

This	 is	 Juan.	Hi,	 Juan.	Question	one	 is	a	silly	question,	but	 I	noticed	when	you're	using
your	IPython,	when	you	start	entering	multi-line	input,	you	hear	a	colon,	but	in	mine,	it
uses	a	dot,	dot,	dot	ellipses.

(2:07:23	-	2:07:33)

Is	there	a	reason	that	mine	is	different	than	yours?	There's	a	good	question.	Let	me	just
see	what	I	get	just	to	confirm.	So	if	I	make	a	dictionary.

(2:07:35	-	2:07:38)

Left	braids.	It's	really	odd.	I	think	visually.

(2:07:38	-	2:07:52)

Because	I	like	the	colon.	It's	less	verbose.	You	like	the	colon.

Well,	the	thing	is,	yours	is	accurate	and	mine	is	inaccurate	because	it's	mine.	That's	what
it's	actually	putting	on	the	screen	is	an	ellipsis.	I	can	see	with	my	little	vision	here.

(2:07:53	-	2:08:08)

Oh,	so	it's	maybe	NVDA	reading	ellipses	as	a	colon.	I	don't	know	how	NVDA	would	read
it.	I	mean,	NVDA	does	mess	up	output,	but	I	don't	see	it	doing	a	reading	as	a	colon.

(2:08:08	-	2:08:28)

I	 would	 say	 the	 possibilities,	 it's	 order	 of	 likelihood	 are	 one,	 that	 I'm	 using	 an	 older
version	of	IPython,	which	I	know	I	am	because	I	was	too	lazy	to	reinstall	it,	but	there	was
really	no	 reason	 to	do	 it.	And	 they	 fixed	 this,	but	 this	was	a	bug	and	 they	 fixed	 it.	So
that's	a	fairly	likely	possibility.

(2:08:29	-	2:08:55)

Two,	so	if	I	installed	a	new,	I	updated	my	version	here,	which	honestly	I've	had	on	this	for
years,	so	 it's	probably	kind	of	out	of	date.	Can	I	get	version	 information	about	that	big
version?	 I	 notice	 you're	 running	 Python	 3.8	 and	 I'm	 running	 3.12.	 You're	 probably	 on
3.12.	 Yeah,	 so	 that's	 a	 lot	 of	 versions	 out	 of	 date.	 So,	 you	 know,	 so	 I	 would	 say	 it
might've,	there	might've,	they	might've	fixed,	that	might	be	a	bug	that	they	fixed.

(2:08:56	-	2:09:16)

That	seems	fairly	likely	given	how	out	of	date	mine	is.	I	would	also	say	another	possibility

is	 I	 have	 magnified	 or	 like	 I've	 made	 the	 font	 like	 70	 something,	 which	 is	 kind	 of	 all
source	of	a	lot	of	bugs	with	NVDA	right	now	because,	you	know,	it's	cutting	things	off,	it's
doing	weird	things	like	that.	So	it	could	be	a	source	of	something	like	that.

(2:09:17	-	2:09:36)

And	yeah,	 I	 could	have	a	different	NVDA	setting,	but	 I	 think	 that's	almost	a	 less	 likely
possibility	because	it's	so	weird.	Okay,	it's	probably	because,	yeah,	your	version	is	way
older	than	mine.	Okay,	my	second	question	is	something	you	kind	of	very	touched	very
lightly	on,	like	a	single	sentence	last	time,	but	I	was	just	curious.

(2:09:38	-	2:09:53)

So	the	magic	command	per	edit,	so	it	opens	Notepad.	Is	there,	do	you	know	how,	do	you
know	how	to	change	that?	Because	it's	opening	Notepad.	It's	kind	of	a	little	more	like	an
office	hours	thing	because	it's	a	multi-step	process.

(2:09:54	-	2:10:19)

Yeah,	but	basically	what	we're	gonna	do	is	change	a	setting.	There's	a	functionality	here,
a	magic	command	to	change	settings	and	we	will	use	it	to	change	the	setting,	which	will
be	the	command	line	command	for	the	node.	Probably	you	want,	do	you	want	VS	code?
You	probably	want	VS	code,	right?	Yeah,	well,	it's	okay.

(2:10:19	-	2:10:35)

I	 don't	 need	 it	 exactly.	 I	 just	 want	 to	 know,	 I	 just	 want	 to	 make	 sure	 it's	 not	 like
something	I	change	in	Windows.	If	it's	something	I	change	in	IPython,	or	is	it	something
that	changes?	Yeah,	you	can	change	it	in,	yeah,	I	don't	think	it,	it	may	open	the	default
text	editor	for	your	operating	system.

(2:10:35	-	2:10:53)

So	 if	 there's	a	way	 to	change	 it	 in	Windows,	 that's	worth	 trying.	But	 I	do	 think	 it	does
require,	 I	 suspect	 it	 requires	 a	 change	 of	 setting	 in,	 or	 in	 either	 the	 command	 line	 or
IPython.	But	I	will-	I	can	Google	that,	I	can	Google	that.

(2:10:53	-	2:11:03)

Yeah,	yeah,	exactly.	But	you	know	what?	It's	something	that	might	be	useful	for	people.
So	I	might	look	it	up	and	include	it	in	the	resource	that	I'm	creating	here.

(2:11:03	-	2:11:13)

So	people	know	to	change	it.	And	it's	useful,	like	if	VS	code	opens	and	then	you	can	edit
stuff	and	use	your	full	screen	reader	and	everything,	save	it,	and	then	it	runs	it	in	there.

That's	a	really,	kind	of	a	nice	workflow.

(2:11:16	-	2:11:33)

Yeah.	I	mean,	it	was	okay	to	use	Notepad,	but-	And	Notepad	stinks,	you	know,	it's	like-	I
mean,	for	simple,	like	setting	up	structures,	like	simple	dictionaries,	isn't	a	big	deal,	but
the	auto-completion	in	VS	code	is	way	better.	And	so	it	just	makes	coding	a	lot	easier.

(2:11:34	-	2:11:39)

Notepad++	is	also	pretty	good.	It	is	accessible.	So,	cool.

(2:11:39	-	2:11:43)

Awesome.	That's	Juan,	right?	Thank	you,	Juan.	Yes.

(2:11:44	-	2:12:08)

Anyone	else	have	a	question,	want	to	get	on	the	mic?	Well,	if	that's	all	the	mic-friendly
questions,	feel	free	to	jump	in	before	I	end	here.	I	guess	we'll	end	the	recording	and	then
I'll	stick	around	for	a	little	bit	if	people	want.

