
Nonvisual	Python	(Nonvisual	Data	Science	Workshop	#1)
(0:01	-	0:30)

Hi	 all,	 and	 welcome	 to	 the	 non-visual	 Python	 workshop.	 This	 is	 going	 to	 be	 the	 first
workshop	 of	 a	 five-workshop	 series	 on	 non-visual	 data	 science	 in	 Python.	 And	 this
workshop	series	is	led	by	myself,	Patrick	Smyth,	and	also	Sarah	Kane,	and	it's	funded	by
a	grant	from	NumFocus	and	Pandas,	so	thank	you	very	much	for	supporting	that.

(0:32	-	4:27)

And	so	 in	 this	workshop	series,	we'll	be	 learning	how	to	work	with	data	without	vision,
sight,	or	using	much	of	the	focus	of	many	introductory	data	science	tutorials,	workshops,
and	so	on,	which	 is	on	visualization.	So	 in	 this	workshop	series,	we'll	be	working	up	to
creating	a	sonification	of	a	data	set.	We'll	be	putting	together	that	data	set,	and	on	the
way,	we'll	be	learning	for	the	fundamentals	of	the	Python	programming	language,	some
fundamentals	of	Pandas,	which	is	a	data	science	library	or	tool	that's	very	widely	used,
and	also	for	sonification,	we'll	be	using	Astronify,	which	is	a	library,	a	tool	for	sonification.

And	so	 in	 this	workshop	series,	we'll	be	using	or	we'll	be	demoing	 for	you	NVDA,	non-
visual	 desktop	 access,	 the	 screen	 reader,	 and	 as	 we	 use	 Python.	 You	 can	 use	 other
screen	 readers.	 I've	 heard,	 we've	 heard	 good	 reports	 that	 JAWS	 works	 well	 with	 this
tutorial	with	very	similar	shortcuts,	but	what	you	will	be	seeing	and	hearing	is	NVDA.

So	just	want	to	explain	a	little	bit	about	what	is	Python,	what	is,	and	what	are	the	tools
that	we're	going	to	be	using	in	this	workshop	series.	So	the	Python	is	a,	it's	what's	called
a	high	level	programming	language.	So	if	you	imagine	that	the	computer	being	kind	of	a
stack	from	high	to	low,	and	then	on	the	high	end	of	that	stack,	there	will	be	languages
that	are	a	little	closer	to	how	people	think,	how	people	talk,	and	how	people	would	deal
with	problems.

And	on	the	low	end	of	that	is,	so	a	low	level	language	would	be	how	the	computer	thinks
in	terms	of	numbers,	data,	and	so	on.	So	Python	is	a	high	level	programming	language,
meaning	it's	a	little	closer	to	how	we	as	people	think.	The	trade-off	there	of	course	is	in
speed.

The	computers	are	so	fast	these	days	that	often	that	trade-off	is	kind	of	one	we're	willing
to	make.	So	Python	 is,	 it's	been	around	for	quite	a	while	now.	 I	 think	 it	was	created	 in
1989.

It's	a	programming	language	that's	used	widely	in	industry	and	the	academy.	It's	used	to
create	 applications.	 It's	 used	 to	 perform	 what	 are	 called	 scripting	 tasks,	 which	 are
essentially	automated	tasks	that	you	make	on	your	computer,	say	automating,	moving
around	files	and	folders	and	so	on.



But	 for	 our	 purposes,	 it's	 also	 used	widely	 for	 data	 science.	 And	 the	 very	 short,	 data
science	is	an	application	of	technology	and	statistics	for	studying	data.	And	it's	sort	of	a,
people	who	are	data	scientists,	they	describe	them,	they	do	a	wide	variety	of	things,	but
it	kind	of	grew	out	of	the	mathematical	discipline	of	statistics	and	so	on.

And	these	days	 it's	a	very	technological	discipline	where	often	programming	and	other
technical	skills	are,	if	not	necessary,	then	incredibly	useful.	So	what	are	we,	how	are	we
going	 to	 be	 accessing	 Python	 today?	 We'll	 be	 switching	 now	 to,	 in	 a	 second,	 to	 the
environment	that	we'll	be	using	to	interact	with	Python,	which	is	called	iPython.	But	for
this	workshop,	you	should	have	installed	two	pieces	of	software.

(4:28	-	5:15)

The	first	is	NVDA,	non-visual	desktop	access.	That's	the	screen	reader	we're	going	to	be
using	to	interact	with	our	computer.	And	then	the	second	is	Anaconda,	which	is	a,	what's
called	a	distribution	of	Python.

So	Python,	you	can	go	to	the	Python	website	and	download	sort	of	the	standard	Python
installation,	which	is	called	CPython.	And	that	comes	with	a	whole	bunch	of	useful	tools
and	so	on.	It's	for	a	general	purpose.

What	we're	asking	you	to	 install	 is,	which	 is	called	Anaconda.	And	you	can	go	to	some
search	engine	and	type	Anaconda	download,	and	it	should	be	the	first	page	that	comes
up.	But	what	Anaconda	is,	it's	a	distribution	of	Python.

(5:16	-	6:51)

So	 it's	 basically	what	 you	would	 get	 if	 you	 installed	 sort	 of	 the	 default	 Python,	 plus	 a
bunch	of	extra	tools	that	are	useful	 for	data	science	specifically.	 It	 is	a	 little	bit	big,	so
make	sure	you	have	a	little	extra	room	on	your	hard	drive.	I	think	it's	something	like	a
gigabyte,	and	it	can	take	a	little	while	to	install.

But	once	you	have	 it,	you	can	get	a	whole	bunch	of	additional	 functionality,	additional
tools,	specifically	related	to	data	science.	Unfortunately,	not	all	of	the	tools	that	come	to
Anaconda	 are	 accessible	 to	 the	 blind	 and	 screen	 reader	 users.	 Notably,	 Jupyter
Notebooks,	which	are	one	of	the	main	ways	people	interact	with	Python	for	data	science,
those	are	not	currently	100%	accessible.

There's	definitely	been	 improvements	over	 the	 last	couple	years	 in	usability	 for	screen
reader	users,	but	 it's	not	quite	 there.	 It's	 still	a	 little	bit	 clunky.	What	we	will	be	using
after	we	install	Anaconda	is	called	the	Anaconda	prompt,	and	specifically	IPython.

So	we'll	 be	opening	 that	up	 in	 a	minute,	 and	you'll	 see	 in	here	what	 it	 looks	 like.	But
IPython	essentially	is	kind	of	a	fancy	program	to	interact	directly	with	Python,	to	have	a
conversation	with	Python.	I'll	explain	a	little	bit	more	about	what	IPython	does	over	the



course	of	this	workshop.

(6:54	-	9:32)

Before	we	move	on	 to	 the	part	 of	 the	workshop	where	we	actually	 start	writing	 some
code	and	working	with	Python,	I	 just	want	to	thank	a	few	people.	This	is	a	re-recording
due	to	some	technical	issues	of	the	workshop	we	had	on	February	6th,	where	we	had	a
number	of	helpers	to	facilitate,	and	so	I	just	want	to	thank	the	helpers	that	were	there.
So	those	are	Alex	Ogden,	Elizabeth	Sola,	Sarah	Kane,	who	is	leading	this	workshop	series
with	me,	Stephen	Zweibel,	Monica	Thew,	and	Paul	Alexander-Bloom.

So	thank	you	to	our	helpers	who	helped	out	on	February	6th,	2024.	And	I	also	really	want
to	 thank	 Patrick	 Hofler,	 who	 sort	 of	 supported	 this	 initiative	 from	 within	 Pandas.	 So
Patrick	is	a	core	developer	at	Pandas,	so	I'd	just	like	to	thank	Patrick.

And	just	to	say	who	I	am,	I'm	Patrick	Smyth.	I	am	a	teacher,	a	writer,	and	a	programmer.
I	am	the	chief	learner	at	IOTA	School,	so	we're	a	consultancy	where	we	work	with	clients
on	accessibility,	documentation,	and	infrastructure	coding.

And	you	can	learn	more	at	IOTASchool.com.	And	I	personally,	I'm	visually	impaired.	I'm	a
visually	impaired	programmer.	I	have	maybe	something	like	2%	vision	remaining.

I	have	no	central	vision.	I	have	retinitis	pigmentosa.	So	I	have	a	little	residual	vision	that
you	may	see	me,	you	know,	use	occasionally,	but	mostly	I'm	a	screen	reader	user.

And	so	I	will,	the	focus	of	this	workshop	series	is	definitely	on	the	screen	reader	use,	but
I	will,	you	know,	I	know	there	are	some	low	vision	people	and	some	sighted	people	who
are	following	along	with	these	workshops,	so	 I	will	attempt	also	to	explain	some	of	the
low	vision	and	the,	you	know,	sighted	ways	of	doing	some	of	these	same	things.	Okay,
so	without	 further	 ado,	 let's	 transition	 to	 sort	 of	 demo	mode	 here,	 and	we	will	 get	 to
writing	 a	 little	 bit	 of	 Python.	 So	 I'm	 here	 on	my	Windows	 desktop,	 and	 the	 first	 thing
we're	going	to	do	is,	you	know,	if	you	haven't	already,	you	should	start	NVDA.

(9:33	-	12:26)

I	 already	 have	NVDA	 running.	 I'm	 going	 to	 turn	 it	 off	 and	 start	 it	 again	 just	 for	 demo
purposes.	That's	the	sound	of	NVDA	turning	off.

I'm	going	 to	press	 the	Windows	button	and	 type	NVDA	and	press	enter.	Excellent.	We
should	have,	we're	good	to	go	with	NVDA.

So	the	next	thing	I'm	going	to	do	is,	I	am	an	eSpeak	speech	user,	so	the	voice	I	use	is	a
little	scratchy	sounding,	so	I'm	going	to	make	it,	change	the	profile	to	be	a	little	more	of
a	 friendly	sounding	voice,	so	NVDA	menu,	NVDA	button	and	N,	and	 I'm	going	 to	go	 to
profile.	Okay,	and	change	it	to	a	slightly	nicer	sounding	voice,	and	then	you	should	have



Anaconda	installed.	If	not,	you	can	go	to,	in	any	search	engine	type,	Anaconda	download,
and	it	should	be	the	first	result.

Go	ahead	and	 install	 it.	 You	 can	use	 the	default	 settings	 as	 you	 install,	 and	once	 you
have	Anaconda	installed,	what	we	want	to	use	is	the	Anaconda	prompt.	So	the	Anaconda
prompt	is,	essentially	it's	a	command,	it	opens	a	command	line	application	that	we'll	be
using	throughout	this	workshop	series.

So	let's	go	ahead	and	open	that	up.	Okay,	so	press	the	Windows	button.

Now	we	have	search,	so	I'm	going	to	type	Anaconda.	Okay,	so	I	typed	a	little	bit	of	the
word	Anaconda.

I	typed	a	little	bit	of	the	word	Anaconda,	and	Anaconda	prompt	was	the	first	result.	What
you	don't	want	 is	what	 is	called	the	Anaconda	navigator.	So	the	Anaconda	navigator	 is
something	that's	only	partially	accessible.

It's	just	another	part	of	this	Anaconda	distribution.	We	do	not	want	that.	What	we	want	is
the	Anaconda	prompt.

Okay,	so	make	sure	that	that's	what	you're	getting.	I'm	going	to	press	enter	to	start	that.
Okay,	and	then	I'm	pausing	it.	So	we	have,	if	you	listen	now,	you'll	hear	what	we	have	in
front	of	us,	or	what	we're	going	to	hear	is	essentially	a	prompt.	Basically	it's	a	command
line	and	a	prompt,	meaning	prompt	is	some	text	suggesting,	oh,	type	something	in	here.

So	 listen	 for	 what	 that	 sounds	 like.	 "(base)	 C:\Users\Patrick>."	 It	 said	 C	 drive,	 users,
Patrick,	greater,	and	the	greater	is	sort	of	the	prompt.

The	 greater	 is	 kind	 of	 a	 little	 greater	 than	 sign,	 and	 that's	 suggesting,	 hey,	 type
something	in.	When	they	say	prompt,	it's	sort	of	like	encouraging	you	to	type	something.
So	if	you	hear	that,	you	should	be	in	the	right	place.

(12:29	-	13:23)

And	 I	want	 to	do	one	thing	before	we	move	on,	which	 is	 if	you're	using	this	video	and
you're	totally	blind	or	you're	not	using	your	vision	for	this,	it	won't	be	relevant	to	you.	Or
if	you're	sighted,	it	may	not	be	relevant	to	you.	But	for	low	vision	people,	I	want	to	give	a
little	advice	on	making	this	environment	maximally	visible	for	a	low	vision	usage.

So	first	of	all,	on	Windows,	I	personally,	I	invert	the	colors	on	the	whole	OS.	So	I'm	going
to	do	that	now.	That's	using	the	magnifier.

When	 the	 magnifier	 is	 activated,	 and	 to	 start	 the	 magnifier,	 you	 can	 hold	 down	 the
Windows	button	and	press	the	plus	key,	which	will	zoom	in.	But	if	you	don't	have	it	open,
it	will	open	magnifier.	Once	you	have	magnifier	open,	Windows	magnifier,	you	can	use
control	alt	I,	and	that	will	invert	the	colors	on	your	OS.



(13:25	-	13:35)

That	can	be	obviously	very	useful	 if	you're	not	using	 it	already.	 I'm	going	to	maximize
this	application	that	we	have.	So	I'm	going	to	hold	on	Windows,	the	Windows	button	and
press	up.

(13:36	-	21:10)

So	 that	 kind	 of	 maximizes	 the	 application	 automatically	 using	Windows	 up.	 And	 then
what	I	want	to	do	is	show	you	how	if	you	if	you	would	 like	to	make	the	text	extremely
large,	as	I	have	on	my	screen.	So	let's	pull	down	the	I	think	it	is	control	space.	Maybe	alt
space,	hold	down	alt	and	press	space.	Yeah,	there	we	go.

And	then	you	can	press	 the	P	button.	So	 it's	alt	space,	 then	you	press	 the	P	button	to
open	 properties	 for	 this	 application.	 Or	 you	 can	 go	 through	 this	 menu,	 "move
unavailable,	size	unavailable,	minimize	n,	maximize	unavailable,	close	C,	edit	E,	defaults
D,	properties	P"	properties	P	or	you	can	just	press	the	P	button.	But	I'm	press	enter	now,
""Anaconda	Prompt	(Anaconda3)"	Properties	dialog	true	type	fonts	are	recommended	for
high	DPI	displays	as	raster	font.	I'm	going	to	go	ahead	and	pause	that.	But	that	is	what
we're	we	have	open	is	the	properties	for	our	for	our	Anaconda	prompt	application.

And	 essentially,	 the	 first	 of	 these	 properties	 is	 the	 font	 size.	 So	 if	 you	 press	 tab	 "font
grouping,	size	combo	box."	So	what	 I	did	was	right	 there	was	 I	pressed	tab	and	then	 I
tabbed	backward	and	then	you	hear	it's	a	combo	box	for	size	and	you	can	adjust	the	size
up	and	down.

And	I	just	maxed	it	out.	So	set	at	minus	like	72	or	76	or	something	like	that.	They	maxed
it	out,	made	it	maximally	large.

And	if	you	go	a	little	back,	so	shift	tab	backward	"tab	control	tab	selected",	then	you	you
have	a	bunch	of	tabs	and	one	of	the	other	tabs	is	color.	So	if	you	move	along	in	the	tabs,
"layout	tab	select	colors	tab	selected",	there's	a	colors	tab.	So	you	can	also	if	you're	low
vision	and	colors	matter	to	you,	then	you	can	adjust	the	colors.

And	in	my	case,	I	made	it	light	because	I	now	invert	the	whole	OS.	But	you	know,	your
mileage	may	vary,	you	should	pick	 the	colors	 that	work	best	 for	you.	Okay,	so	we	can
increase	the	font	and	change	the	colors.

You	can	also	change	the	font	if	that	is	something	that	matters	to	you.	So	I'm	going	to	go
ahead	and	press	escape	to	close	this.	Okay,	and	now	we	are	in	you	know,	we're	in	the
place	where	we	are	right	after	we	type	Anaconda	prompt	and	and	we	are	our	command
line	prompt.

And	essentially	what	we're	 in	 right	now	 is	 the	 it's	a	version	of	 the	Windows	command
line,	also	known	as	sometimes	as	CMD,	where	but	it	has	a	few	extra	things	loaded	into	it.



That's	 what	 Anaconda	 prompt	 is.	 It's	 a	 version	 of	 the	 default	Windows	 command	 line
with	some	extra	stuff	loaded	in	that	is	useful	for	us,	especially	for	like	our	purposes	with
data	science	and	learning	Python.

And	 right	 now	we're	 using	 the	 sort	 of	 the	 general	 CMD	 command	 line.	 So	 you	 know,
which	is	it	can	be	useful.	But	what	we	actually	want	is	to	be	talking	directly	to	Python	for
the	next	part	of	this	workshop	series.

So	let's	go	ahead	and	we're	going	to	type	the	letter	I	and	then	the	word	Python.	Okay,	so
letter	I	and	the	word	Python,	just	like	a	big	snake.	Okay,	so	I,	P,	Y,	T,	H,	O,	N.	So	I	 just
have	the	word	IPython.

I'm	 going	 to	 press	 space	 just	 so	 you	 hear	 it	 again.	 I	 deleted	 the	 space.	 And	 then	 I'm
going	to	press	enter.

"Python	3.8.8	(	default,	Apr	13th,	2021.	1:5:08:03."	So	I'm	going	to	pause	that.	So	there's
a	 bunch	 of	 text	 that	 gets	 printed	 out.	 But	 what	 you	 want	 to	 listen	 for	 is	 the	 Python
version	number.	Okay.

And	the	Python	version	number	will	sort	of	tell	you,	okay,	now	we're	actually	talking	to
Python.	Okay.	So	it's	printed	out	a	whole	bunch	of	stuff.

We	could	resume	 it	and	hear	 the	rest,	but	 it's	a	 little	 long.	"[MSC	v.1916	64	bit	 (	AMD
64)".	 It's	a	whole	bunch	of	 information	about	 this	specific	version	of	Python	 that	we're
running.	But	what	we	can	do	now	 is	 I'm	going	to	teach	you	a	shortcut	 that	we'll	use	a
bunch	of	times	in	this	workshop,	and	that	is	to	clear	the	screen.

Okay.	Which	can	be	very	useful.	So,	so	let's	get	rid	of	this	extra	information	that	we	had
printed	out	when	Python	starts.

We're	going	to	hold	down	control	and	press	L	as	in	Lima.	So	control	L	"In	[1	]:	.	And	what
we	heard	was	 in	 left	bracket	one,	 right	bracket	 colon.	Can	we	have	 it	 say	 that	again?
"Space	 left	 bracket	 one,	 right	 bracket	 colon"	 in	 it's	 in	 left	 bracket	 one,	 right	 bracket
colon.	Okay.	And	that	is	basically	waiting	for	us	to	type	some	Python	in.

And	 let's,	 what	 we're	 going	 to	 do	 is	 we're	 going	 to	 type	 a	 little	 Python	 and	 then
something	 will	 happen.	 Okay.	 So	 we're	 going	 to	 type,	 type	 something	 in,	 and	 then
something	will	happen.

The	obvious	thing	will	happen,	but	then	something	else	will	happen.	So	I	will	explain	both
of	these	to	you,	but	let's	actually	just	go	ahead	and	do	it.	So	what	we're	going	to	do	is
we're	going	to	do	a	little	math.

Okay.	So	what	I	want	you	to	do	is	type	along	with	me	and	then	I'll	do	some	explaining.
And	throughout	this	workshop	series,	we'll	kind	of	have	that	pattern	a	 little	bit	where	 I



will	ask	you	to	do	something,	go	ahead	and	do	it,	and	then	I'll	do	a	little	explaining.

And	 just	because	 I	 feel	 that	 it's	easier	 to,	 to,	 to	understand	 the	explanation	or	 for	 the
explanation	to	make	sense	after	you've	sort	of	done	it	and,	and,	and	heard	the	output	or,
or	experienced	the	output.	So	let's	go	ahead	and	type	in	five,	the	number	five,	a	space,	a
plus,	a	space,	and	another,	a	six.	So	it's	a	five	plus	space	six.

So	we,	we	heard,	what	we	heard	was	"out	 left	bracket	one	right	bracket	colon	11".	So
our	output	is	11.	We	typed	five	plus	six	and	our	output	is	11.

There's	a	little	extra	stuff	that	appears	before	we	get	the	output	that	we	want.	And	I'm
going	 to	explain	 that	now.	But	 so,	 so	what	happened	when	we	did	 this?	Basically	 you
type	something	in,	in	this	case	it	was	five	plus	six,	you	got	an	out,	some,	then	something
happened.

Python	did	a	random,	sort	of	its	own	little	processes	of	simplifying	the,	what	we	gave	it.
So	five	plus	six	got	turned	into	11.	And	then	it	printed	out	the	results	to	us	or	returned
the	result	to	us.

And	then	we	got	a	prompt	to	given	another	line	to	Python.	So	basically	we're	doing,	what
we're	 doing	 is	 we're	 having	 a	 conversation	 with	 the	machine	 where	 we	 give	 it	 code,
something	happens,	and	then	we	get	something	back.	Okay.

And	there's	a	fancy	programmer	word	for	this	that	I'm	going	to	explain	to	you.	And	then
we're	going	to	use	that	word	from	now	on	when	we	talk	about	this	process.	And	that	is
the	fancy	word,	the	fancy	term	is	REPL.

So	what	we're	using	here	 is	 the	Python	REPL.	And	essentially	 it's	a	 four	stage	process
and	that's	exactly	what	 I	explained	to	you.	So	 it's	read,	that	 is	we	type	something	into
the	computer,	the	computer	reads	it	in.

(21:11	-	21:23)

Evaluate,	that's	the	process	of	something	happens,	Python	runs	a	process	or	it	simplifies
what	 we	 have.	 That's	 the	 evaluation.	 Then	 print,	 that's	 the	 computer	 returning
something	back	to	us.

(21:23	-	21:43)

And	then	loop,	that's	the	process	of	the	prompt	happening	again	or	waiting	for	our	input
again.	Okay.	So	read,	eval,	print,	loop,	that	is	our	four	stage	process.

It's	the	REPL.	Okay.	And	another	way	you	use	the	word	REPL	is,	oh,	I'm	going	to	open	the
Python	REPL.

(21:44	-	23:09)



So	when	we	typed	IPython	a	little	while	ago,	we	started	the	Python	REPL.	So	this	process
where	we	talk	to	Python,	that	is	a	REPL.	Okay.

And	now	what	I	want	to	do	is	now	explore	and	explain	a	little	bit	of	the	structure	of	this
input	and	output	that	we've	done.	So	let's,	before	we	do	that,	let's	type	in	one	more	line
of	math.	And	then	we're	going	to	talk	about	how	we	can	move	around	using	NVDA	and
explore	our	input	and	output	that	we	did.

So	let's	do,	we	did	five	plus	six.	Let's	do	another	plus.	So	let's	do	two	space	plus	space
two.	Two.

So	I	typed	two	space	plus	space	two.

So	let's	run	it.	Two	plus	two.	Out	left	bracket	two	right	bracket	colon	four.

So	you	heard,	what	you	heard	was	out	 left	bracket	two	right	bracket	colon	four.	So	we
typed	in	two	plus	two	and	our	result	is	four.	But	we	always	hear	this	OUT	before	we	get
our	result.

Okay.	So	now	what	we've	run	so	far	is	we	had	five	plus	six,	it	did	in	one,	five	plus	six,	and
then	out	one,	11.	So	five	plus	six,	we	got	the	output	was	11.

(23:09	-	24:21)

And	 then	we	did	another	 input	output	pair.	We	did	 in	 two,	 so	 the	second	 input	output
pair.	And	then	we	said	two	plus	two.

And	then	we	got	out	two,	four.	Okay.	So	we	have	two	input	output	pairs	so	far.

And	there's	a	kind	of	a	term	for	this.	And	we	can	use	the	word	cell.	So	a	pairing	of	input
and	output,	we	can	use	the	term	cell.

So	a	cell	is	a	combination	of	an	input	and	an	output	in	this	IPython	environment.	And	it's
language	commonly	used	 in	 the	 Jupyter	notebook	environment.	So	 if	you	have	sighted
colleagues	 who	 use	 Jupyter	 notebooks,	 and	 you	 hear	 them	 talking	 about	 cells,	 that's
essentially	what	they're	talking	about.

It's	 one	 of	 these	 pairings	 of	 input	 and	 output.	 Okay.	 So	 what	 I	 want	 to	 do	 now	 is	 go
backward	and	use	the	NVDA	review	functionality	to	travel	backward	in	what	we've	done
and	review	the	inputs	and	outputs.

So	 you	 can	 hear	 what	 the	 structure	 is	 using	 NVDA.	 Okay.	 So	 I'm	 going	 to	 hold	 down
NVDA	and	press	up.

(24:22	-	25:37)

"Top.	In	left	bracket,	one	right	bracket,	colon,	five	plus	six."	So	we're	actually	at	the	very



top.

So	we're	 hearing	 in	 one,	 colon,	 five	 plus	 six.	 And	 now	we're	 going	 to	move	 down.	 So
we're	going	to	do	NVDA	button	and	then	down.

And	we	should	hear	our	output	 from	five	plus	six.	 "Out	 left	bracket,	one	 right	bracket,
colon,	11."	Okay.

So	I'm	hitting	NVDA	down.	Okay.	And	I	just	want	to	say	I'm	using	the	laptop	hotkeys	for
NVDA,	and	I	will	mostly	be	using	the	laptop	hotkeys	throughout	this	tutorial.

However,	 if	 you're	using	 the	desktop	hotkeys	 in	NVDA,	which	are	actually	 the	default,
then	what	you	want	to	do	is	use	the	numpad	for	navigating	backward	and	forward.	And	I
believe,	 I'll	 double	 check	 this,	 but	 I	 believe	 the	hotkeys	 for	 that	 are	 holding	down	 the
NVDA	 button	 and	 typing	 either,	 I	 think	 it's	 seven	 for	 moving	 backward	 and	 nine	 for
moving	forward	by	line.	But	essentially	what	the	numpad,	the	numpad,	it's	divided	into
nine	keys.

(25:38	-	25:49)

And	there	are	three	keys	for	moving,	three	of	the	keys	are	for	moving	line	by	line.	Three
of	 the	 keys	 are	 moving	 from	 word	 for	 word.	 And	 three	 of	 the	 keys	 are	 for	 moving
character	by	character.

(25:49	-	26:02)

And	 then	 each	 of	 those	 three	 is	 divided	 into	 going	 backward,	 reading	 what	 you're
currently	on,	and	moving	 forward.	Okay.	And	 it's	actually,	 it's	 fairly	 intuitive	when	you
get	using	it.

(26:02	-	27:15)

If	it's	not	working	and	you	know	you're	on	NVDA	desktop	mode	and	you	have	a	numpad,
then	remember	the	numpad	is	the	numbers	that	are	sort	of	on	the	right,	 if	you	have	a
large	keyboard	on	 the	 right,	not	 the	numbers	 that	are	on	 the	 top	of	your	alphabetical
keys,	 but	 the	 numbers	 that	 are	 on	 the	 right	 of	 your	 keyboard,	 then	 you	make	 sure,	 I
think	you	have	to	make	sure,	sometimes	your	numpad,	your	numlock	being	on	and	off
can	matter	in	that.	So	you	might	want	to	experiment	with	that.	Okay.

So	 if	 you're	 using	 the	 desktop	 and	 you,	 or	 you	 have	 a	 numpad,	 you	 might	 want	 to
experiment	 with	 your	 holding	 on	 the	 NVDA	 button	 and	 using	 the	 numpad	 to	 move
around,	to	review.	But	 I'm	using	the	 laptop,	so	 I	am,	 I'm	holding	on	NVDA,	pressing	up
and	down	to	move	line	by	line.	Okay.

And	then	let's	keep	reviewing.	So	we	just	heard	out,	one,	and	11.	And	I'm	going	to	move
down	one	more.



"Blank".	And	I	heard	blank.	So	now	there's	a	blank	line.	There's	a	blank	line	separating
each	cell	input	output	pairing	has	a	blank	line	to	separate	it.	So	it's	in	out,	and	then	you
have	a	blank	line.	Then	we	have	in	out	and	a	blank	line	and	so	on.

(27:15	-	28:42)

Okay.	That's	the	general	structure.	So	let's	quickly	go	through	the	next	cell.

"In	 left	bracket	 to	 right	bracket,	colon	 two	plus	 two."	Okay.	 I'm	navigating	by	 line	still,
NVDA	down.

"Out	left	bracket	to	right	bracket,	colon	four	blank.	And	there's	our	blank."	Okay.

So	there's,	there	should	be	a	input	output	blank,	input	output	blank.	That's	the	structure
that	we're	working	with	here.	Each	cell	input	output	pairs	is	separated	by	a	blank	line.

Okay.	And	now	we	should	be,	have	one	more.	In	left	bracket	three,	right	bracket,	colon.

And	then	that	should	be	the	end.	"Blank.	Blank.

Bottom."	Yeah.	So	there's	actually	some	blank	lines	and	then	the	bottom.

But	basically	 the	end	 is	here.	 In	 left	bracket	 three,	 right	bracket,	colon.	And	 it's	 in	 left
bracket	three,	right	bracket,	colon.

It's	waiting	for	us.	This	is	the	third	cell.	It's	waiting	for	the	input	for	the	third	cell.

Okay.	It's	waiting	for	our	third	piece	of	input	before	it	gives	us	some	output.	Okay.

So	that's	the	structure.	Now	I	recommend,	you	know,	at	this	point	in	the	workshop,	I	give
a	little	time	for	reviewing.	You	know,	so	I	would	say,	you	know,	pause	this	video,	take	a
few	 minutes	 to	 now	 practice	 your	 reviewing,	 moving	 around	 in	 this	 command	 line
environment	before	things	get	too	complicated.

And	 a	 few	 other	 useful	 hockey.	 So	 you	will	 probably	 also	 want	 to	move	 character	 by
character.	So	you	can	kind	of	really	get	a	sense	of	what	the	lines	are.

(28:42	-	31:54)

So	for	example,	if	we	go	to	this	output	line,	"blank	out,	 left	bracket,	two,	right	bracket,
four."	That's	our	output	from	the	second	cell.	And	we	can	move	using	the	NVDA	right.

We	can	move	character	by	character.	So	that	beep	was	capital	O.	So	it's	out,	two,	and
then	that	four	is	the	output	from	two	plus	two.	Okay.

So	you	can	move	character	by	character.	So	go	ahead	and	practice	reviewing	in	this	so
you	get	a	hang	of	 it.	And	 then,	you	know,	pause	 the	video	and	 then	come	back	when



you're	ready.

So	let's	do,	you	know,	hopefully	you're	ready.	You've	practiced	your	reviewing.	Let's	go
ahead	and	do	a	little	more	math.

Okay.	So	let's	do,	we	only	have	learned	the	plus.	So	let's	learn	the	other	four.

And	then	I'll	talk	a	little	bit	about,	you	know,	we	put	some	spaces	in.	I	want	to	talk	about
spacing	 and	 so	 on	 in	 Python	 after	 that.	 So	 let's	 go	 ahead	 and	 do,	 let's	 do	 ten	 space,
minus,	I'm	sorry,	minus,	dash.

And	that's	the	same	as	a	hyphen.	And	then	I'm	going	to	do	ten	minus	three.

"left	bracket,	three,	right	bracket,	colon,	seven."	So	ten	minus	three	is	seven.	And,	you
know,	remember	you're	once	you	type	your	 line	of	Python,	you	hit	enter	and	you'll	get
some	output.

Okay.	So	the	hyphen	or	minus	is	subtraction.	Now	let's	do	multiplication.

Let's	do	 three	 times	 four.	So	we're	going	 to	do	 three,	space.	And	then	we'll	do,	 it's	an
asterisk	or	star,	which	is	you	have	to	hold	down	shift	and	press	eight.

So	asterisk	or	star.	And	then	do	a	space.

And	let's	do	four.

So	 three	 times	 four.	 And	 it's	 star	 or	 asterisk	 is	multiplication.	 "Out,	 left	 bracket,	 four,
right	bracket,	colon,	12."

And	the	answer	is	12.	That's	our	output.	And	then	we	have	our	current	line	in	five.

So	it's	waiting	for	our	input.	"Out,	left	blank.	In	left	bracket,	five,	right	bracket,	colon."	In
five.	It's	waiting	for	our	input.	So	now	let's	finally	do	division.

So	let's	do,	why	don't	we	go	ahead	and	do	24	divided	by	four.

And	then	let's	use	forward	slash.

So	it's	the	slash	on	the	bottom	right	of	your	keyboard.	Not	backslash,	forward	slash.

24	divided	by	four.

"Out,	left	bracket,	five,	right	bracket,	colon,	6.0.	And	our	output	was	6.0."	And	I'll	explain
a	little	bit	about	why	that	output	is	a	little	bit	different	in	a	minute.	Okay.	So	why	do	we,
now	we	did	addition,	multiplication,	subtraction,	and	addition.

(31:54	-	33:18)



And	there's	one	 thing	 I	 said	a	 little	earlier.	 I	 said,	oh,	when	we	 type	 in,	something	will
happen.	So	we	 typed,	we've	 typed	a	 few	 lines	of	 code	and	we've,	 and	 something	has
obviously	happened.

We	get	some	output	back.	Okay.	Some,	some,	when	we	run,	we	run	code,	some	process
happens	and	we	get	output	back.

That's	the	obvious	thing	that	happened.	But	when	you	ran	your	first	line	of	code	there,
when	you	ran,	when	you	write	six,	five	plus	six,	something	else	happened.	Okay.

And	that	is	that	you	became	a	programmer.	Okay.	So	you	can't	take	it	back	now.

You	 ran	 some	code,	 you	 know,	 so	 you,	 you,	 I	 now	have	 the	 right	 to	 call	 yourself,	 you
don't	 have	 to	 call	 yourself	 a	 programmer,	 but	 you	 have	 the	 right	 to	 call	 yourself	 a
programmer.	Okay.	A	programmer	is,	is	someone	who	writes	code,	you	know,	and,	and
you've	written	some	code.

So	you're	now	a	programmer.	Okay.	And	you	can't	take	it	back.

Okay.	 So	 I	 kind	 of	 tricked	 you	 guys.	 When	 you've	 written	 code,	 now	 you're	 a
programmer.

So	you,	you	know,	don't	 let	anyone	say	you're	not	a	programmer.	Okay.	So,	you	know,
we've	written	our	first	few	lines	of	code.

I	want	to	explain	just	a	couple	of	things	about	the	ins	and	outs	of	that.	So	one	is	that	we
put	some	spaces	in	when	we	wrote,	wrote	this	code.	And	it,	now	the	question	is,	are	the
spaces	necessary?	And	Python	is	very	heavy	on	spaces	and	annotation	and	making	new
lines	and	stuff	like	that.

(33:20	-	34:00)

And	a	lot	of	it	is	designed	to	make	things	more	readable	for	sighted	people.	Some	of	it	is
necessary	 for	 the,	 even	 the	 computer	 to	parse	what	 you've	written.	And	 some	of	 it	 is
actually	just	to	make	things	a	little	easier	to	read	for	sighted	and	some	low	vision	people.

It,	 it	 generally	 will	 work	 if	 you	 don't	 put	 spaces	 in.	 So	 let's	 try	 two	 plus	 two	 without
spaces.	I	just	typed	in,	sorry,	it's	a	little	too	fast.	And	I	didn't	put	any	spaces	in.	Out	left
bracket	six	right	bracket	colon	four.	So	we	have	four.

(34:00	-	38:49)

Okay.	And	it	worked	just	as	well.	So	why	do	we	bother	putting	the	spaces	in?	The	spaces
make	things	more	readable.

Now	you	would	basically	 have	 to	 decide	 readable	 for	 sighted	people.	 So	 you	basically



have	to	decide	if	you,	how	much	you	care	about	that.	So	if	you	think	you'd	be	working,
you	know,	 in	a	professional	capacity	with	sighted	people,	 if	you	 think	you'll	be	putting
your	code	online	and	looking	for	people	to	contribute	to	it	or	maybe	you'd	be	looking	for
a	job	or	something	like	that,	you	want	your	code	to	look	professional,	then	I	would	get	in
the	habit	of	you	putting	in	those	spaces	now	because	it	will	make	your	code	look	more
professional.

It	will,	you	know,	 it's	 the	quote	unquote	correct	way	to	code	 is	 to	put	 in	 those	spaces.
However,	 if	 you	 feel	 like	 you're	 going	 to	 be	 working	 on	 your	 own	 project,	 you're	 not
going	 to	 be	 collaborating	 or	 you're	 going	 to	 be	 collaborating	 mainly	 with	 other	 blind
developers,	 you	may	not	 care	as	much	about	putting	 in	 spaces.	So	your	mileage	may
totally	vary.

I	do	know	blind	programmers	who	don't	bother	with	the	spaces	because	they	kind	of	find
them,	you	know,	not	useful	or	annoying.	If	you	want	the	best	of	both	worlds,	you	can	not
put	the	spaces	in	and	you	can	run	programs	that	are	called	linters	after	the	fact,	which
basically	will	make	your	code	like	all	fancy	and	nice,	but	you	don't	have	to	write	it	that
way.	It	will	kind	of	go	through	your	code	and	clean	everything	up	and	put	the	spaces	in
where	Python	thinks	there	should	be	spaces	and	so	on.

So	that's	if	you	really	want	the	best	of	both	worlds,	you	can	look	into	linters.	One	I	like	is
called	Black,	and	that	 is	a	 linter	that	will	 take	Python	code	and	tidy	 it	up,	make	it	 look
kind	 of	 fancy	 or	whatever.	 So	 that	 spaces,	 they're	more	 a	 style	 thing	 than	 something
that's	actually	 super	necessary,	okay?	All	 right,	 so	we	have	done	our	 little	bit	of	math
here.

Now	let's	talk	about	what	are	called	data	types.	So	these	are,	we're	going	to	learn	five
data	types	in	this	introductory	Python	workshop,	and	these	data	types	will	also,	a	lot	of
this	becomes	very	useful	when	we	move	on	 in	 the	next	session	to	pandas	and	to,	you
know,	 to	 the	data	science	context.	These	are	data	 types	 that	are	all	going	 to	be	quite
critical	in	that	data	science	context.

So	let's	go	ahead	and	learn	the	five	data	types,	and	let's	do	that	thing,	like	I	said	before,
we're	going	 to	 run	 some	code,	 I'm	going	 to	 tell	 you	what	 to	 type,	 you're	going	 to	get
some	output,	and	 then	after	we're	done,	 I'll	explain	 it,	okay?	So	 I'm	going	 to	clear	my
screen,	control	L,	"In	[7]:"	we're	all	 ready	to,	we're	on	our	seventh	cell,	we're	ready	to
type	some	new	code	in,	and	what	I	want	you	to	enter	is,	follow	along	after	me,	and	we're
going	to	enter	 the	word	 type,	 t-y-p-e,	and	then	open	parenthesis	or	a	 left	parenthesis.
Well,	 I	might	 say	 those	words	 interchangeably,	but	 I	want	you	 to	use	 left	paren,	 type,
and	then	I'm	going	to	have	you	just	enter	the	number	five,	and	then	a	right	paren.	So	it's
type,	left	paren,	five,	right	paren,	okay?	Type,	left	paren,	five,	right	paren.

Int	is	the	output	that	we	got	from	that.	So	let's	do	a	couple	more.	So	let's	do	type,	left
parenthesis,	 left	 paren,	 and	 then	 let's,	 now	 let's	 do	 5.0,	 right	 paren,	 space,	 "out	 left



bracket,	eight	right	bracket,	colon,	float."

So	I	put	a	space	on	the	end	there,	but	it	wasn't	necessary,	so,	but	what	we	got	back	was
float.	"Blank,	out	left	bracket,	eight	right	bracket,	colon,	float."	There	we	go.

"Blank,	 in	 left	 bracket,	 nine	 right	 bracket,	 colon."	 So	 we	 got	 float,	 which	 is	 short	 for
floating	point	number.	We'll	explain	what	that	is	in	a	minute,	but	let's	do	our	other	ones.

So	we	 did	 int,	 five	 was	 int,	 5.0	 was	 float.	 Now	 let's	 do	 type,	 t-y-p-e,	 left	 parenthesis,
double	 quotes,	 hello,	 double	 quote,	 right	 paren.	 Okay,	 so	 it's	 type,	 left	 parenthesis,
double	quotes,	h-e-l-l-o,	hello,	double	quote,	right	parenthesis.

(38:50	-	43:56)

Okay,	and	let's	hit	enter.	"Out	left	bracket,	nine	right	bracket,	colon,	s-t-r,	in	left	bracket,
ten	right	bracket,	colon."	We	got	out,	our	output	was	s-t-r,	short	for	string.

Okay,	we're	going	 to	do	 two	more,	 so	 that's	 three.	We	did	 integer,	 float,	 string.	We're
going	to	do	two	more.

Let's	do	 type,	 t-y-p-e,	 left	paren,	 left	parenthesis,	and	 let's	do	capital	T,	 true,	and	 that
beep	was	me	putting	in	the	capital.	"True,	right	paren."	And	there's	a	right	paren,	enter.

"Out	 left	 bracket,	 ten	 right	 bracket,	 colon,	 bool,	 in	 left	 bracket."	 Boolean	 or	 bool	 was
what	we	got	 for	 that.	 So	we	did	 type,	 left	paren,	 capital	 T,	 true,	 right	paren,	and	 that
result	was	boolean.

Okay,	and	then	 let's	do	one	more,	and	then	 I'm	going	to	explain	what	all	of	 these	are.
Okay,	so	let's	do	last	one,	type.	This	is	the	most	complicated	one,	so	I'll	go	slow.

"Type,	 left	 parenthesis,	 and	 then	 let's	 do	 right	 square	 bracket,	 or	 sorry,	 left	 square
bracket,	 left	bracket.	Okay,	and	that	 is,	 it's	a	row	down	from	your	number	row	on	your
keyboard,	number	row	down,	and	it's	over	toward	the	right.	Okay,	so	from	my	keyboard,
it's	the	third	from	the	right	on	the	second	row	from	the	top.

It's	near	the	backspace	key,	and	then	let's	type	in	one,	comma,	two,	comma,	three,	and
then	I'm	going	to	do	right	square	bracket,	right	bracket,	right	parenthesis.	So	that's	type,
left	square	bracket,	I'm	sorry,	start	again,	type,	left	parenthesis,	left	square	bracket,	one,
comma,	two,	comma,	three,	right	square	bracket,	and	then	right	parenthesis.	Let's	run
that.

And	that's	a	list,	so	.	Our	type	there,	or	the	object	we	gave	it,	we'll	talk	about	objects	in	a
minute,	but	was	a	left	square	bracket,	and	then	a	bunch	of	other	objects,	so	in	this	case,
one,	two,	and	three,	separated	by	commas.	Okay,	so	a	list,	that's	how	a	list,	you	create	a
list	in	Python.



So	what	are	all	these	data	types?	Let's	go	over	them,	and	we	won't	really	be	using	any
other	data	types	in	this,	with	one	exception,	which	we'll	get	to	at	the	end.	So	let's	talk
about	 integers	and	floats.	So	 integers	and	floats,	 that's	what	we	started	with	when	we
did	 our	 math,	 we	 used	 integers,	 and	 integers	 are	 numbers	 without	 decimals,	 they're
whole	numbers.

Floats	 are	 floating	 point	 numbers,	 they're	 numbers	 with	 decimals.	 And	 I	 guess	 an
obvious	question	here	is,	why	does	Python	keep	track	of	these	differently,	or	why	can't
we	 just	 have	 decimals	 on	 all	 our	 numbers?	 The	 short	 answer	 is	 that	 decimal	 points
sometimes	make	things	a	little	bit	tricky.	Numbers	with	decimals	can	be	computationally
intensive,	and	then	you	have	to	make	some	decisions	about	where	to	cut	off,	like	if	you
do	 certain	 kinds	 of	 division	 and	 stuff,	where	 do	 you	 cut	 off	 decimals,	 say	 if	 you	 have
three,	three,	three,	three,	three,	if	you	do,	you	know,	certain	kinds	of	division,	and	then
maybe	you	don't	know	exactly	where	to	cut	off.

So	 if	 you	 do,	 say,	 for	 example,	 10	 divided	 by	 three,	 three,	 "out	 left	 bracket,	 12	 right
bracket,	 colon	 3.33333333333333335."	 So	 you	 have	 to	 make,	 that	 could	 have	 been
different,	we	could	have,	they	could	have	decided	to	add	a	couple	extra	threes,	and	so
on.	So	because	decimals	are	always	sort	of,	by	definition,	sort	of	imprecise,	and	because
they	 can	be	kind	of	 computationally	 intensive,	 programmers	often	keep	 track	of	 them
separately.	 However,	 you	 often	 won't	 have	 to	 think,	 unless	 you're	 working	 with
extremely	 large	 numbers,	 or	 unless	 precision	 matters	 a	 lot,	 you	 won't	 have	 to	 think
about	this	too	much,	okay?	Because	Python	is	pretty	sensible	in	how	it	handles	math,	but
what	you	just	need	to	know	is	that	there	are	two	kinds	of	numbers	that	you're	going	to
encounter	frequently.

There's	actually	other	kinds	of	number	data	types,	but	we	won't	talk	about	those	in	this
workshop.	But	 you	 just	need	 to	 know	 that	 there	are	different	number	data	 types,	 and
that	the	behavior	is	a	little	bit	different	between	them,	okay?	So	integers	and	floats	are
both	numbers.	Then	we	had	one	which	is	a	little	bit	close	to	my	heart,	because	I	have	a
humanities	background,	I	have	a	PhD	in	English,	and	you	know,	I'm	very	into,	you	know,
books	and	text,	and	this	data	type	is	basically	text,	and	it's	called	a	string.

(43:57	-	48:57)

So	 a	 string	 is	 a	 sequence	 of	 characters,	 okay?	 And	 people	 often	 say	 an	 arbitrary
sequence	 of	 characters,	 arbitrary	 from	 the	 computer's	 perspective,	 because	 the
computer	generally	doesn't	care	what	is	in	a	string.	It's	humans	who	care	what's	in	the
string,	but	it's	arbitrary	from	the	computer's	perspective,	and	so	it	can	really	be	any	kind
of	text	characters.	It	can	be	text	in	the	form	of	alphanumeric	characters,	so	it	could	be
letters,	numbers,	or	also	special	symbols,	okay?	Or	also	white	space.

These	are	all	valid	things	to	have	in	a	string,	okay?	And	a	string	could	be,	you	know,	a
whole	novel	can	be	contained	in	a	string.	So	strings	are	very	humanities	data	type.	And



then	let's	talk	about	Boolean.

So	that's	a	much	more	philosophical	data	type.	So	it's	either	true	or	false.	So	Booleans
are,	there's	only	two	Booleans.

So	 there's	 capital	 T,	 true,	 and	 capital	 F,	 false.	 And	 true	 represents	 truthiness,	 or
statements	that	are	true,	and	false	represents	falsiness,	statements	that	are	false,	okay?
And	we'll	get	into	this	a	little	bit	more	later	in	the	workshop,	but,	you	know,	for	now,	you
know,	true	represents	true,	false	represents	false.	We'll	get	a	little	more	into	why	that's
useful	later.

And	the	last	one,	which	is	going	to	be	very	important	in	this	workshop	series,	is	the	list,
because	it's	going	to	be	how	we	store	a	lot	of	our	data.	We're	going	to	store	our	data	in
lists	 like	 objects,	 not	 necessarily	 lists,	 but	 things	 similar	 to	 lists.	 And	 the	 list	 is	 a
sequence	of	other	data	types.

So	 in	a	 list,	you	can	have	numbers,	you	can	have	strings,	you	can	have,	you	know,	 in
numbers	 in	 the	 form	 of	 integers	 and	 floats,	 you	 can	 have	 Booleans,	 or	 you	 can	 even
have	other	 lists.	 And	 in	 fact,	 that	 is	 a	 frequent	 technique	 is	 to	 have	a	 list	 full	 of	 lists,
which	sounds	confusing,	but	it's	actually	quite	useful.	So	those	are	our	five	data	types.

And	we'll	be	working	with	them	all	more,	and	we're	going	to	 learn	more	about	each	of
them	as	we	move	on	in	this	workshop.	So	and	we're	going	to	learn	one	more	data	type
at	the	end,	but	it's	kind	of	a	special	case.	So	okay,	so	those	are	our	data	types.

So	the	other	thing	I	want	to	explain	here	is	what	did	we	do	when	we	did	type,	we	typed
the	word	type,	or	we	entered	the	word	type,	and	then	we	did	a	left	paren,	and	then	we
put	 something	 in	 it,	 in	 the	parenthesis,	 and	 then	we	 close	 the	parenthesis.	 So	we	did
type,	 left	 paren,	 say	 five,	 and	 then	 a	 right	 paren.	 And	 then	 what	 we	 got	 back	 was
integer.

And	what	 were	we	 doing	with	 when	we	 did	 that	 whole	 type	 thing?	What	 we're	 doing
there	is	using	a	function.	And	a	function	is	a	really	critical	part	of,	of	using	Python.	And
there's	three	ways	to	think	about	functions,	or	I'll	give	you	three	definitions	of	functions.

And	you	for	now	just	pick	the	one	that	makes	the	most	sense	to	you	and	stick	with	that.
And	 I'll	 tell	 them	 they're	 kind	 of	 each	 a	 little	more	 accurate,	maybe,	 or	 a	 little	more
complete	part	of	 the	puzzle.	So	 the	 first	way	of	 thinking	about	a	 function	 is	 that	 it's	a
way	of	doing	something	in	Python.

You	can	kind	of	 think	about	 it	as	a	verb.	And,	you	know,	so	we	did	 type,	and	 then	we
gave	it	a	five,	and	then	we	said,	and	then	it's,	it	came	back	with	integer.	So	type	is	a	way
of	saying,	hey,	tell	me	the	type	of	this	object.

Okay,	every,	all	 of	 these	 things	 that	we're	doing	using	 in	Python	are	objects.	So	 it's	a



very	general	word	that	I'm	using.	We'll	talk	about	objects	more	later	as	well.

And	so	it's	a	verb.	And	then	inside	the	parenthesis	is	sort	of	the	thing	that	the	verb	acts
on.	So	you	can	think	about	it	if	you're,	you	know,	into	grammar,	it's	the	direct	object	or
whatever.

But	if	you're	not	into	grammar,	don't	worry	about	it.	But	it's	the	thing	the	verb	acts	on.
Okay,	that's	one	way	of	thinking	about	functions.

Another	way	of	thinking	about	functions	is,	it's	a	way	of,	that	you	can	save	code	to	run
later.	Okay,	 so	you	give	some,	a	name	 to	some	code,	and	 they	can	 run	 it	again	 later.
Okay,	and	another	word	for	that	type	of	function	or	thinking	about	functions	that	way	is
a,	it's	a	routine,	or	a	subroutine.

Those	 are	 kind	 of	 old	 fashioned	 words,	 because	 they're	 not	 used	 as	 often	 anymore.
They're,	 because	 they	 apply	 more	 readily	 to	 programming	 languages	 that	 were
programming	 languages	 that	 were	 a	 lot	 more	 limited	 than	 Python,	 or	 modern
programming	languages,	but	it's	still	accurate.	So	a	function	is	a	routine.

So	 it	means	you	can	store	some	code	and	use	 it	 later.	And	then	the	 last	way,	which	 is
maybe	the	most	accurate	way	of	thinking	about	a	function	is	that	it	is	a,	it	is	an,	it	takes,
it's	 something	 that	 takes	an	 input,	 it	 runs	a	process,	 and	 then	 it	 gives	you	an	output.
Okay,	so	it	takes	an	input,	it	runs	a	process,	and	it	gives	an	output.

(48:57	-	50:57)

And	I	often	think	about	it	in	my	mind,	I	think	about	it	as	a	box.	Okay,	so	a	function	is	a
box	with	a	hole	in	the	top	and	a	hole	in	the	bottom.	So	you	put	things	in	the	hole	in	the
top,	and	then	you	turn	the	box	on,	it's	a	machine,	you	know,	machine	type	box,	you	turn
it	on,	you	press	the	on	button,	and	it	goes	beep,	beep,	boop,	boop.

And	 then	 something	 comes	 out	 the	 bottom.	Okay,	 that's	 one	way	 of	 thinking	 about	 a
function.	So	for	example,	one	function	could	be	like,	if	you	imagine	in	real	life,	a	pinkifier.

So	imagine	you're	a	big	machine,	say	10,	you	know,	a	couple	feet	tall,	and	there's	a	hole
in	the	top	and	a	slot	in	the	bottom.	And	you	can	put	things	in	the	top.	And	you	say	I	take
my	favorite	mug,	which	is	green,	my	favorite	color	is	green,	and	I	put	it	in	the	pinkifier.

And	then	I	turn	it	on,	it	goes	beep,	beep,	boop,	boop.	And	then	out	the	bottom	comes	my
mug,	but	now	it's	pink.	Okay,	the	pinkifier.

Okay,	 so	 that's	 the	 kind	 of	 things	 that	 functions	 do.	 It	 takes	 something,	 often	 it
transforms	 it,	 but	 an	 accurate	 way	 to	 think	 about	 it	 is	 it	 does	 something,	 because	 it
doesn't	always	transform	it.	And	then	it	returns	something	back	output,	as	an	output.

Sometimes	the	thing	it	returns	is	it	says	nothing,	but	that's	also	an	output	in	Python.	So



those	are	the	three	ways	of	thinking	about	functions.	Okay,	and	we'll	be	learning	a	few
more	functions	as	we	go	on	in	this	workshop,	at	least,	you	know,	three,	four,	five	more
functions	in	this	workshop.

All	right,	so,	you	know,	if	this	is,	if	you're	following	along	with	me	at	home,	this	might	be
a	good	time	to,	you	know,	let	your	brain	cool,	go	get	a	cup	of	coffee,	go	get	a	tea.	I'm
going	to	be	pushing	on	here.	But	our	next	topic	is	we're	going	to	talk	about	variables.

And	variables,	you	know,	since	we're	moving	on	to	another	topic,	I'm	going	to	clear	the
screen.	So	I'm	going	to	hold	down	control	and	press	L.	Okay,	we're	going	to	have	a	nice
clear	screen.	It's	waiting	for	our	input.

(50:57	-	51:12)

And	we're	going	to	do,	we're	going	to	talk	about	variables.	So	let's	do	the	thing	where	I
tell	you	something,	and	then	we	do	it,	and	then	I'll	explain	it	afterward.	So	I'm	going	to
type,	I'm	going	to	tell,	I'm	going	to	type	the	word	greeting.

(51:14	-	51:33)

"g-r-e-e-t-i-n-g,	greeting".	I	did	a	space,	sorry.	I	did	a	space.

And	 then	 I	 pressed	equals,	 And	 then	 I	 do	 a	 space.	And	 then	 I'm	going	 to	 do	 a	 quote,
double	quote,	and	then	I'm	going	to	type,	hello.

(51:38	-	55:14)

So	I	did	greeting	equals	double	quote,	hello,	double	quote.	Okay,	greeting	equals	double
quote,	hello,	double	quote.	And	I'm	pressing	enter.

Now	notice	something	funny	there.	You	notice	something	missing?	We	didn't	get	a	line
with	output.	I	just	got	in	again.

So	"blank,	blank,	blank,	blank,	blank,	blank,	blank,	in	left	bracket	14,	right	bracket	blank,
in	 left	 bracket	 13,	 right	 bracket	 colon,	 greeting	 equals	 quote,	 hello	 quote."	Okay,	 and
then	a	blank	line.	And	then	the	next	one	is	input	again.	"In	left	bracket	14,	right	bracket
colon."	There's	no	output.	And	the	way	to	think	about	this	is,	what	we	did	was,	we	typed
greeting	equals	quote,	hello	quote.

And	basically	what	that	did	is,	we	take	a	piece	of	data,	which	is	our	string,	hello,	and	we
assign	it	to	a	variable.	So	basically,	the	best	way	to	think	about	it	is,	you	give	it	a	name.
So	we	take	that	piece	of	data	and	we	gave	it	a	name,	which	in	our	case	is	greeting.

So	hello	gets	the	name	greeting.	And	we	get	no	output	because	instead	the	iPython	likes
to	return	sort	of	the	last	piece	of	data	that	we	give	it.	And	in	this	case,	the	data	sort	of
goes,	 instead	of	 coming	back	 to	us	 in	 the	REPL	and	us	getting	 the	output,	 the	data	 is



going	into	the	variable.

You	can	think	about	it	as	being	stored	in	the	variable.	So	when	you	save	a	variable,	or
when	you	assign	a	variable,	that's	the	correct	technical	or	programming	term	in	Python,
when	you	assign	the	variable,	you	won't	get	output.	And	you	can	think	about	it	as	that
data	going	into	the	variable	or	being	stored	in	the	variable	and	not	coming	back	to	us.

So	 let's	 do	 one,	 assign	 more	 and	 more	 variables.	 So	 let's	 call	 it	 say	 parting.	 Space.
Equals.	 Space.	 Double	 quote.	 And	 then	 goodbye.	 And	 then	 a	 double	 quote.	 So	 it's
parting.	Space.

Equals.	Space.	Double	quote.

Goodbye.	Double	quote.	And	I'm	going	to	press	enter.

Again,	no	output.	We	just	heard	our	in	waiting	for	a	line	again.	So	there's	no	output	on
these	cells	that	assign	a	variable.

So	now	we	have	two	variables,	greeting	and	parting.	So	 let's	 try	putting	greeting	on	a
line	by	itself	and	running	that.	"G-R-E."

Now	I	started	typing	this	and	suddenly	I'm	like,	man,	I	typed	G-R-E	and	it's	so	much	work
to	type	the	rest.	It's	just	really	tiring	me	out.	And	something	I	always	say	is	programmers
are	lazy.

Programmers	don't	like	to	do	things	more	than	once.	So	I	already	typed	in	greeting	once
and	I	really	don't	want	to	do	it	again.	I	want	to	make	the	computer	do	the	work.

So	programmers,	whenever	possible,	hate	 to	 repeat	 themselves	or	ourselves,	because
like	 I	said	before,	you're	now	a	programmer.	And	they	hate	 to	 repeat	 themselves.	You
hate	to	repeat	yourself.

(55:15	-	1:00:27)

And	they	also	are	really	lazy.	Okay.	And	they	like	to	make	the	computer	do	the	work.

So	I	typed	G-R-E.

And	I	want	the	computer	to	fill	in	the	rest.	So	go	ahead	and	hit	the	tab	button.	"Edding."

And	 you	 heard	 it	 say	 edding.	 And	 that	 was	 it.	 It	 said	 we	 already	 had	 G-R-E	 and	 the
edding	was	it	filling	in	the	rest	of	greeting.

So	it's	greeting	now.	So	if	I	press	space,	you'll	hear.	"Space."

Oh,	you	should	have	heard	greeting,	but	it	didn't	do	it.	But	we	have	greeting	on	this	line.
And	I'm	going	to	hit	enter.	"Out	left	bracket	15	right	bracket	colon.



Hello."	Okay.	"In	left	bracket	16	right	bracket	colon."

So	I	typed	in	greeting	and	I	let	the	computer	fill	in	the	rest,	because	I'm	lazy.	And	when
greeting	was	on	a	line	by	itself,	the	input	line,	I	pressed	enter.	And	then	what	I	got	back
was	quote	hello	quote.

And	 in	 fact	 it	blank	"in	 left	bracket	13	right	bracket	colon.	Greeting	equals	quote	hello
quote."	Yeah.

Quote	hello	quote.	 "Blank	 in	 left	 bracket	14	 right	bracket	 colon	equals	quote	goodbye
quote.	 Blank	 in	 left	 bracket	 out	 left	 bracket	 15	 blank	 in	 left	 blank	 bottom."	 Sorry,	 I'm
going	all	the	way	to	the	bottom	again.	And	so	we	have	our	output,	which	is	hello.

So	when	you	type	a	variable	by	itself,	you	put	it	in	a	line	by	itself,	what	you	get	back	is
what	the	fancy	programmer	term	is	a	representation	of	that	variable.	But	basically	what
you're	getting	back	is	it	tells	you	what	that	variable,	what	data	is	in	that	variable	or	what
data	 is	 assigned	 to	 that	 variable.	 So	we	 typed	 in	 greeting	 and	we	 got	 hello,	 because
that's	the	data	we	say	we,	you	know,	quote	unquote	saved,	we	assigned	to	the	variable.

Okay.	And	let's	do	parting.	"P-A-R-T."

And	then	I'm	going	to	press	tab	to	finish	the	rest.	P-A-R-T	in.	Parting.

You	know,	get	used	 to	using	 that	 tab	button,	because	 it	 comes	 in	very	useful	 and	 it'll
prevent	you	from	making	typos.	Because	if	you	let	the	computer	do	the	work,	you	know,
we	 as	 humans	 tend	 to	 do	 typos	 because,	 you	 know,	 we	 have	 fingers	 and	 all	 this
complicated	stuff	 that	we	have	going	on.	The	computer	 tends	 to	get	 things	 like	 this	a
little	more	right	where	it	just	fills	things	in.

So	 go	 ahead	 and	 use	 that	 tab	 a	 lot.	 Okay.	 "Out	 left	 bracket	 16	 right	 bracket	 colon
goodbye."

Goodbye.	So	parting	is	assigned	to	or	the	goodbye	string	is	assigned	to	parting.	Okay.

All	right.	So	let's	also	do	something.	Let's	do	greeting	space	parting.

Sorry,	greeting	space	plus	space	parting.	So	 it's	greeting	plus	parting.	"G-R-E-E-T-I-N-G
space	plus	space	P-A-R-T-I-N-G."

So	you're	hearing	only	a	part	of	it	because	I'm	filling	it	in	with	tab.	Greeting	plus	parting.
Out	left	bracket	17	right	bracket	colon	hello	goodbye.

Hello	goodbye.	So	when	you	add	strings	 together,	 it	actually	combines	 them	together,
which	is	cool.	The	fancy	word	is	concatenates	them.

It	 combines	 them	 together.	 So	 greeting	 plus	 parting.	 And	 then	 the	 output	 was	 hello



goodbye.

And	there's	no	space	between	them.	So	if	you	wanted	a	space,	you	could,	you	know,	add
one	to	the	end	of	hello	or	the	beginning	of	goodbye.	But	we	didn't	do	that.

So	so	variables.	And	then,	of	course,	they	don't	need	to	be	full	words.	So	you	can	totally
say	X	X	equals	five	"in	left	bracket	19	right	bracket	colon."

And	there's	no	output.	Right.	Remember	when	we	assign	a	variable,	there's	no	output.
And	then	we	could	say	Y	equals	10	"in	left	bracket	20	right	bracket	colon."	And	then	we
can	do	X	plus	Y"out	left	bracket	20	right	bracket	colon	15."	So	the	output	was	15.

And	or	we	could	do	X	times	Y	"X	star	space	Y	out	left	bracket	21	right	bracket	colon	50".
So,	you	know,	five	five	times	10	is	50.	You	know,	X	times	Y	five	times	10	is	50.	Or	you
could	 do	 Y	 times	 Y.	 So	 be	 Y.	 Remember,	 Y	 is	 10.	 So	we	 could	 do	 Y	 times	 Y	 "out	 left
bracket	22	right	bracket	colon	100.	So	100."

I	cut	it	off	there	a	little	early,	but	the	answer	with	the	output	was	100.	So	variables	can
be	 long	or	short.	What	you	the	only	 rules	with	variables	 is	you	can't	you	have	to	start
with	a	letter.

You	can't	start	with	a	number	or	space	or	something.	And	well,	you	can't	use	spaces	at
all.	And	there's	only	a	few	special	symbols	you're	allowed	to	use.

You're	allowed	to	use,	for	example,	underscores.	But	you	so	variables	in	general	should
be	lowercase.	And	if	you	have	more	than	one	word,	you	should	use	underscores.

(1:00:27	-	1:00:53)

There	are	exceptions	to	that,	but	we're	not	going	to	get	into	them	in	this	workshop.	Now,
there's	certain	conditions	where	you	use	all	uppercase	or	starting	with	an	uppercase	or
some	other	types	of	variable	names.	But	we	won't	get	into	them	in	this	workshop.

You	can	look	those	up	if	you	if	you're	interested.	But	you	shouldn't	start	your	variables
with	 numbers.	 And	 I	 would	 also	 say,	 in	 general,	 you	 should	 make	 your	 variables	 as
descriptive	as	possible.

(1:00:54	-	1:05:00)

So	we	will	be	using	some	short	variable	names	in	the	next	workshop.	They're	sort	of	also
a	little	bit	exceptional.	But	broadly	speaking,	you	should	make	your	variables	descriptive
and	easy	to	understand	rather	than	making	them	all	x	or	z	or	whatever.

Okay,	that's	fine	in	some	very	specific	circumstances,	but	mostly	try	to	err	on	the	side	of
making	them	more	understandable.	Okay.	All	right,	so	we've	done	variables.



So	we	did	variables.	And	now	we're	going	to	do	the	we're	going	to	talk	a	little	bit	about
first,	I'm	going	to	I'm	answer	a	common	question	that	I	get	at	this	point,	which	is	about
double	quotes,	and	we	have	to	use	double	quotes.	And	then	we'll	get	a	little	into	errors
and	how	we	deal	with	errors	in	Python.

So,	 so	 okay,	 so	 first	 of	 all,	 double	 quotes.	 So	 in	 this	workshop,	 I'm	 almost	 exclusively
going	 to	 use	double	 quotes,	 because	 it's	 less	 confusing.	However,	 you	 can	 totally	 use
single	quotes	to	when	you're	creating	strings.

Okay.	 So	 for	 example,	 you	 can	 do	 we	 did	 greeting,	 parting.	 I'll	 make	 one	 called
exclamation,	"e,	x,	c,	l,	a,	m,	a,	t,	i,	o,	n,	exclamation	equals	equals	space	quote,	quote,
tick."

So	you	heard	 the	word	you	heard	 the	character	 tick	 there,	 I	used	a	single	quote,	 tick.
And	then	I'll	say	yee	haw,	"y,	e,	e,	a,	a,	w."	So	it's	"yee	haw,	tick."	I	put	another	tick.

So	that	is	exclamation,	space	equals	space,	tick,	which	is	a	single	quote,	yee	haw,	tick.
Okay,	and	this	will	work	just	as	well	"in	left	bracket	24,	right	bracket	colon."	Okay,	and	so
we	didn't	get	any	output	there.

But	now	we	can	do	e,	x,	c,	I	typed	in	e,	x,	c,	I'm	going	to	let	it	fill	in	the	rest,	lamation,
lamation,	exclamation.	Let's	press	enter.	 "Out	 left	bracket	24,	 right	bracket	colon,	yee
haw."

There's	yee	haw.	And,	and	that	worked	fine.	But	what	you	can	do	is	mix	double	quotes
and	single	quotes.

Okay.	So	stick	to	one	or	the	other,	you	can	have	use	single	quotes,	you	can	use	double
quotes,	but	you	can't	use	both.	Okay.

One	thing.	So	now,	I'm	going	to	have	you	go	ahead	and	mix	and	match	a	single	and	a
double	quote,	because	I	want	to	get	an	error.	And	then	I	want	to	talk	about	how	you	can
deal	with	errors	in	Python.

Okay.	So	let's	go	ahead.	And	this	is	going	to	be	our	first	of	two	main	kinds	of	errors.

Okay.	So	we're	going	to	learn	about	two	kinds	of	errors	that	are	very	different.	And,	and
we'll	get	an	example	of	each.

So	this	is	going	to	be	the	first	kind	of	error.	I'll	explain	it.	But	let's	go	ahead	and	write	a
line	of	code	that	will	give	us	an	error.

So	let's	type	in,	we	did	exclamation.	Let's	just	go	ahead	and	do	exclamation	again.	"E,	x,
c,	l,	a,	m,	a,	t,	i,	o,	n.	Exclamation."

Exclamation.	Equals.	Space.	And	I'm	going	to	do	double	quote.



Yeehaw.	And	then	let's	do	single	quote.	"Yeehaw.

Tick."	There's	the	tick.	Okay.

So	exclamation	equals	double	quote	yeehaw	tick.	"File	quote	 lesson	Python	dash	 input
dash	25	dash	c	0	1	d	42	39	0	5	6	greater	quote	line	1	exclamation	equals	quote	yeehaw
carrot	syntax	error	colon	eol	while	scanning	strin	g	literal	in	left	bracket	26	right	bracket
colon."	Okay.

So	that's	a	lot	of	output.	Not	as	bad	as	some	other	programming	languages,	but	basically
what	this	is,	it's	our	error.	And	let's	go	up.

(1:05:00	-	1:05:38)

And	the	last	thing	that	gets	printed	out	is	kind	of	usually	the	most	descriptive.	And	the
rest	of	it	is	trying	to	tell	you	where	the	error	happened.	So	let's	review	and	try	to	find	our
description	of	the	error.

Bottom.	So	we're	at	the	bottom.	"Bracket	26	right	bracket	colon."

Let's	move	up.	"Blank	blank	g	literal	syntax	error	colon	eol	while	scanning	string	literal."
So	and	it's	cut	off	there	because	I	made	the	text	so	big	that	it	cuts	off	after	a	pretty	short
line.

(1:05:39	-	1:05:58)

If	 you	didn't	make	 the	 text	huge	 like	 I	 did,	 you	 shouldn't	 have	 this	problem	 the	 same
way.	But	it	said	"syntax	error	colon	eol	while	scanning	string	literal."	So	it's	syntax	error
eol,	which	is	short	for	end	of	line	while	scanning	string	literal,	which	sounds	complicated.

(1:05:58	-	1:07:04)

But	 the	most	 important	part	here	 is	 syntax	error.	And	 the	syntax	error,	 it's	one	of	 the
main	types	of	errors	in	Python.	It's	one	of	the	two	big	categories	of	error.

And	basically	 it	means	a	syntax	error	happens	even	before	your	code	gets	run.	So	you
type	in	your	code	and	then	there's	a	process	that	happens	before	it	gets	run,	which	is	a
checker.	And	it	checks	that	your	code	is	valid	Python,	that	it's	correct	Python.

And	 if	 it	breaks	a	 fundamental	rule	of	Python,	then	 it	gives	you	a	syntax	error.	So	and
basically	 it's	 saying,	 hey,	 the	 code	 they	 wrote,	 it's	 not	 even	 really	 Python	 because	 it
broke	a	rule.	So	even	before	your	code	gets	run,	if	there's	okay,	I	had	someone	calling
me	very	loudly	there	had	to	pause	for	a	second.

But	so	the	syntax	error,	it	happens	before	your	code	gets	run.	And	if	it	doesn't	pass	that
check,	 you	 get	 a	 syntax	 error.	 And	 typically	 the	 syntax	 error	 is	 with	 some	 piece	 of



grammar.

(1:07:05	-	1:15:09)

So	 it's	 often	with	 quotes,	 for	 example,	 this	 quote	mismatch	with	maybe	 you	 left	 off	 a
parenthesis,	 that's	 a	 very	 common	one.	 Something	 is	messed	up	with	 the	 spacing,	 or
something	that's	wrong	with	say	like	a	comma,	a	square	bracket,	something	like	that.	It's
most	common	source	of	a	syntax	error.

So	those	are	what	you	should	check	first	in	your	line,	when	you	get	a	syntax	error.	Now,
the	stuff	before	this,	where	it	says	syntax	error	is	trying	to	tell	us	where	the	syntax	error
originates.	And	so	let's	go	back	and	review	that	really	quick.

But	unfortunately,	it's	not,	a	lot	of	Python	is	actually	pretty	accessible.	This	part	is	a	little
bit	annoying,	especially	the	syntax	error,	because	it	tries	to	point	out	where	our	error	is.
And	it	does	it	in	a	somewhat	visual	way,	which	is	annoying.

But	 let's	 review	 backward	 "syntax	 error	 colon	 caret."	 So	 okay,	 you	 heard	 caret.	 And
that's	where	the	problematic	thing	is	that	caret	is	trying	to	tell	us	in	the	line	above	where
the	syntax	error	happened.

So	if	we	move	up	one	line,	"exclamation	equals	quote	yeehaw."	Yeehaw.	So	there's	the
caret	is	on	the	line	below,	and	it's	trying	to	point	up	to	where	the	error	happened.

But	the	only	way	to	get	that	as	a	blind	person	is	so	if	you	go	to	that	caret	line,	and	then
you	have	to	count	over,	so	you	have	to	go	"space,	space,	space,	space,	space,	space,
space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,
space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,	 space,
space,	space,	space,	caret."	That	was	26	characters	over,	I	believe.	Okay.

So	 and	 then	 you	 could	 go	 up	 to	 the	 line	 above	 and	 count	 26	 over,	 which	 is	 pretty
annoying.	 But	 let's	 just	 do	 it	 just	 for	 to	 show	 you	 the	 technique.	 "Exclamation	 equals
quote	yeehaw."

Okay.	So	I'm	going	to	quickly	try	to	type	in	NVDA	write,	write	26	times	to	try	to	move	all
the	way	over.	And	that's,	it	was,	I	moved	one	a	little	too	far	there,	but	it	was	under,	it's
under	the,	it's	trying	to	tell	us	in	this	annoying	somewhat	sighted	way,	that	by	putting	a
caret	underneath	 it	visually,	that,	that	the	tick	 is	the	problem,	that	the,	the	quotes	are
mismatched.

So	that,	so	this	is	definitely	something	you	can	do.	You	can	count	where	the	caret	is	by
moving	manually	and	then	going	up.	But	really,	when	you	get	a	 little	bit	more	used	to
using	Python,	you	often	really	won't	need	to	do	this	only	 in	kind	of	 like	a	bad	situation
when	 you	 have	 to	 resort	 to	 something	 like	 this,	 because	 when	 you	 become	 more
experienced	in	Python,	the	syntax	errors,	they	often	become	a	little	more	obvious	to	you



when	you	review	the	line.

Okay.	Because	there's	only	a	limited	number	of	ways	to	trigger	a	syntax	error.	So,	and
especially	as,	if	you're	a	beginning	programmer,	you'll	encounter	syntax	errors	a	lot.

As	 you	 become	 more	 experienced,	 they	 will	 become	 less	 frequent,	 and	 also	 you'll
become	pretty	handy	at	identifying	them.	And	you	won't	necessarily	need	to	do	all	this
counting.	 But	 it's	 good	 to	 know	 that	 that's	 a	 technique	 you	 can	 do,	which	 is	 to	 count
where	the	caret	is,	how	many	characters	the	caret	is,	and	then	go	up	one	line,	count	the
same	number	of	characters	over,	and	that	will	be	where	it's	trying	to	tell	you	where	the
syntax	error	is.

Another	 useful	 thing	 is,	 and	 I'm	 going	 to	 teach	 you	 this,	 this	 is	 mainly	 useful	 for	 us
screen	 reader	 users.	 I	 haven't	 seen	 that	 many	 sighted	 people	 do	 this,	 but	 IPython
provides	a	special	command	to	make	the	output	of	errors	a	little	more	minimal.	So	I'm
going	to	teach	you	how	to	do	that	now,	and	then	we'll	switch	it	back	to	the	way	it	is	now.

Okay.	So	 let's	go	ahead	and	do	 that	 together.	So	 it's	going	 to	be	percent,	 the	percent
symbol,	which	is	above	the	five	on	your	keyboard,	and	then	we	type	xmode,	x-m-o-d-e.

And	 then	 that's	 percent	 xmode,	 and	 then	 we	 type	 minimal.	 I	 typed	 and	 deleted	 the
space	just	so	you'd	hear	the	word.	Okay.

So	 it's	percent	xmod	minimal.	And	 it	said	 it	changed	the	"exception	reporting	mode	to
minimal."	So	if	we	run	our	line	again	to	get	the	exception,	and	this	is,	I'm	going	to	teach
you	one	more	useful	thing,	is	that	you	can	press,	just	press	the	up	key	by	itself,	no	NVDA
or	anything,	 just	up	key	by	 itself,	and	you	can	go	back	 through	 lines	 that	you	entered
before.

So	 let's	enter	 the	 line.	We	got	 the	error	again.	That's,	 it's	doing,	 it's	not	actually	doing
the	minimal	thing,	so	let's	try	one	more	time.

Minimal	and	then,	and	then	let's	do	quote.	Okay.	So	actually	I	misapprehended	there.

This	xmode	only	works	on	this	second	time	type	of	error	that	I'm	going	to	teach	you	now.
It	 doesn't	work	on	 syntax	errors,	 so	 that's	 actually	 something	 I'm	 learning.	So	 let's	go
ahead	and	set	the	xmode	back	to	verbose.

So	I	typed	percent	xmod	verbose,	and	then	I	will,	we'll	use	it	again	when	I	show	you	the
second	kind	of	error.	Okay,	so	okay,	so	we've	learned	a	little	about	syntax	errors.	I	want
to	 show	you	 the	 second	kind	of	 error,	which	 is	 the	error,	 eventually	 it's	 the	error	 that
you're	going	to	see	the	most	often,	which	 is	kind	of	why	 I	was	even	not	even	thinking
about	it	with	xmode,	because	this	is	the	error	that	I	tend	to	see	the	most	often,	which	is,
it's	called	a	traceback	error.



Basically	 what	 happens	 with	 the	 traceback	 error	 is	 Python,	 you	 know,	 it	 passes	 the
syntax	 check,	 and	 your	 Python,	 your	 code	 runs,	 but	 then	 sometime	 during	 your	 code
running	some	kind	of	 logical	 inconsistency	or	problem	occurs.	Okay,	 so	 let's	go	ahead
and	try	to	create	a	one	of	these	traceback	errors.	So	let's	do	one	which	is	to	divide	by
zero.

So	 that's	a	we	could	 try	 to	do	10	divided	by	zero.	And	 then	 forward	slash.	So	 I	did	10
space	forward	slash	space	zero.

10	 divided	 by	 zero.	 So	 what	 you	 heard	 there	 was	 it	 said	 what	 the	 error	 was	 at	 the
beginning,	the	type	of	error,	division	by	zero	error.	Then	what	 it	tried	to	do	was	tell	us
where	the	error	happened.

(1:15:10	-	1:19:50)

Now	it's	pretty	clear	where	the	error	happened	because	we	only	typed	 in	one	 line,	but
often	you're	running	Python	code	that's	more	than	one	line,	so	it	tries	to	explain	where
the	error	happened.	So	it	said,	okay,	you	know,	it's	this	10	divided	by	zero.	And	then	at
the	end,	it	says	the	full	version	of	the	error,	which	is.

I'm	reviewing	down.	Zero	division	error	colon,	division	by	zero.	That's	 the	name	of	 the
error.

So	the	structure	here	 is	 the	beginning	part	 is	mostly	about	 telling	you	where	the	error
happened.	And	then	at	the	very	end,	you	hear	what	type	of	error	it	is,	which	is	actually
usually	the	most	useful	information.	And	this	is	where	the	X	mode	that	I	just	wanted	to
show	you	before	that	I	didn't	work	with	syntax	error	comes	in.

So	if	we	turn	it	on	now,	again,	"percent	sign	X	mode,	percent,	X,	M,	O,	D,	E,	space,	mode,
space,	minimal,	M,	I,	N,	I,	M,	A,	L,	minimal,	space."	I	typed	in	minimal	just	so	you'd	hear
the	 word.	 So	 percent,	 X	 mode,	 space,	 minimal,	 "exception	 reporting	 mode,	 colon,
minimal."

So	it	turned	on	the	minimal	exception	reporting.	And	then	now	let's	run	our	line	that	got
us	an	error	again,	the	division	by	zero,	10	divided	by	zero.	One,	zero,	10,	slash,	space,
zero.

10,	space,	slash,	space,	zero.	10	divided	by	zero.	"Zero	division	error	colon,	division	by
zero."	Okay.	So	when	minimal	is	on,	we	just	hear	the	error,	which	is	actually	really	nice.
Okay.

So	 you	 can	 play	 around	 with	 that	 a	 little	 bit.	 And	 often	 I'll	 turn	 it	 on	 and	 off	 pretty
frequently.	And	then	let's	go	ahead	and	turn	it	back	to	verbose.

Okay.	 So	 we	 could	 do	 "percent,	 X,	 M,	 O,	 D,	 E,	 mode,	 V,	 E,	 R,	 V,	 O,	 S,	 E,	 verbose,



exception	reporting	mode,	colon,	verbose."	So,	okay.

We	 turned	 it	 back	 to	 what	 it	 is	 originally,	 which	 is	 verbose.	 Okay.	 So	 that's	 a	 useful
technique	for	screen	reader	users	because	often	we	don't	want	to	hear	all	of	that	output
about	where	the	error	was.

We	 just	want	 to	hear	what	 the	error	 is.	Okay.	And	then,	you	know,	you	can	often,	you
can	switch	things.

If	you	want	more	information,	you	can	switch	it	back	to	verbose.	Okay.	So	it's	percent	X
mode.

And	what	 that	percent	symbol	 is,	 it's	a	special,	 it's	not	 regular	Python.	So	 it	might	not
work	in	a,	if	you're	writing	Python	in	another	program,	but	it's	a	special	command	related
to	IPython,	you	know,	this	special	REPL	that	comes	with	Anaconda.	Okay.

And	it's	called	a	magic.	It's	a	IPython	magic	command.	Okay.

That	gives	us	a	little	bit	of	control	over	the	environment	that	we're	programming	in	right
here.	All	right.	So	that	is	a	little	bit	on	error.

So	 there's	 two	 kinds	 of	 errors.	 The	 first	 one	 happens	 before	 you	 run	 the,	 before	 the
program	runs.	And	 it's	basically,	oh,	 something	didn't	pass	muster	 in	 terms	of	 like	 the
rules	about	what	makes	a	valid	Python.

And	what	you	want	to	do	in	those	situations	is	check	for	error	problems	with	the	syntax.
So	things	like	quotes,	parentheses,	square	brackets,	and	so	on.	Okay.

Then	the	other	kind	of	error	is	that	your	program	is	running,	but	it	gets	into	some	kind	of
state	where	 there's	a	 logical	 inconsistency.	And	 in	 those,	you	want	 to	often,	what	you
want	to	look	at	is	what	is	the	error	that	it	gave	us.	So	that	last	thing	in	the	error	output.

And	in	our	case,	 it	said	division	by	zero.	And	that's	a	pretty	straightforward	error.	That
means	we	divided	by	zero.

That's	not	allowed.	It's	a	logical	inconsistency.	And	a	lot	of	errors	are	like	that.

A	very	common	error	you	might	get	is	a	name	error.	So	if	you	type	in	a	variable	that	isn't
assigned,	you	haven't	created	yet.	Like	if	I	just	type	in	my	name,	Patrick,	without,	and	we
haven't	assigned	anything	to	it.

And	press	enter.	I'm	just	going	to	use	reviewing	to	get	to	the	error	here.	Name	error.

Name	Patrick	 is	not	defined.	And	 that's	 straightforward	enough.	 It's	a	name	error,	and
the	variable	Patrick	doesn't	exist.

We	tried	to	access	a	variable.	It	isn't	assigned.	So	those	are	the	two	kinds	of	errors.



They're	 syntax	 errors	 and	 traceback	 errors.	 And	 as	 you	 get	 more	 advanced	 in
programming,	 you're	 going	 to	 see	 the	 traceback	 error	 type	more	 often.	 So	 those	 are
errors.

And	now	what	we're	going	to	do	is	we're	going	to	clear	our	screen.	We're	starting	a	new
section.	And	then	we're	all	ready	to	start	a	new	section	here.

(1:19:50	-	1:21:01)

What	we're	going	to	do	is	we're	going	to	learn	a	little	more	about	lists.	So	lists	are	going
to	be	really	critical	for	what	we	do	in	the	next	section,	in	the	section	on	pandas.	So	let's
learn	to	work	with	them	a	little	bit	more.

And	 let's	create	a	 list	 that	we'll	be	working	with	 in	 this	 section.	And	so	we're	going	 to
write	a	variable	name.	So	it's	going	to	be	flowers.

And	let's	do	a	space.	Equals.	And	now	let's	start	our	list.

So	 it's	 going	 to	 be	 left	 square	 bracket,	 double	 quote.	 And	 I'm	 going	 to	 go	 slow	 here
because	it	can	get	confusing.	And	let's	say	rose,	like	the	flower	rose.

Double	quote.	And	then	let's	do	a	comma.	Space.

Now	let's	do	another	one.	Double	quote.	That's	a	violet.

(1:21:01	-	1:27:15)

Violet.	Comma.	Space.

Double	quote.	Buttercup.	B-U-T-T-E-R-C-U-P.

Buttercup.	And	then	a	double	quote.	And	then	now	we	have	our	rose,	violet,	buttercup.

Let's	do	a	right	parenthesis.	And	now	what	we	did	was	we	wrote	the	word	flowers.

That's	our	variable	name.	Flowers.	And	then	we	did	equals.

And	then	we	do	left	parenthesis.	I	mean,	sorry.	Left	square	bracket.

Then	double	quote.	Then	the	word	rose.	Then	a	double	quote.

Then	a	comma.	Then	a	double	quote.	Then	the	word	violet.

V-I-O-L-E-T.	Then	a	double	quote.	Then	a	comma.

Then	we	did	a	double	quote.	We	did	the	word	buttercup.	B-U-T-T-E-R-C-U-P.

Then	we	did	a	double	quote.	Then	we	do	a	right	bracket.	And	so	another	way	of	thinking



about	this	is	there's	three	strings.

Rose,	violet,	buttercup.	You	know,	they're	words	surrounded	by	double	quotes.	And	then
they're	separated	by	commas.

So	 it's	 rose,	comma,	violet,	comma,	buttercup.	And	then	we	surround	that	with	square
brackets.	So	left	square	bracket,	right	square	bracket.

And	then	we	assign	that	to	flowers.	So	it's	flowers	equals	all	of	that	list.	That's	another
way	of	thinking	about	it.

So	 let's	go	ahead	and	press	enter.	And	 remember,	when	we	save	a	variable,	we	don't
actually	 get	 any	 output.	 So	 it	 was	 flowers	 equals	 left	 square	 bracket,	 rose,	 violet,
buttercup.

Each	is	a	string.	And	then	right	square	bracket.	So	we	should	have	our	variable.

Let's	type	flowers	by	itself.	So	I'm	going	to	type	flow.	And	then	let	it	finish	it	by	pressing
tab.

It's	pronouncing	buttercup	a	little	because	the	line	is	cut	off.	So	there's	a	hard	return	in
the	middle	of	buttercup	because	I've	made	the	text	so	big.	That's	why	it's	pronouncing
buttercup	a	little	bit	funny.

But	when	we	type	in	flowers,	we	get	to	hear	our	list.	Our	rose,	violet,	buttercup.	So	let's
try	to	do	a	few	things	with	the	list.

So	if	we	type	in	flowers,	the	variable	name.	And	now	no	space.	Don't	make	a	space.

We	 want	 a	 left	 square	 bracket.	 And	 then	 type	 the	 number	 zero.	 So	 it's	 flowers,	 left
bracket,	zero,	right	bracket.

And	 no	 spaces.	 So	 our	 output	 was	 rose.	 So	 we	 did	 flowers,	 left	 bracket,	 zero,	 right
bracket.

And	our	output	was	rose.	And	so	what	we're	doing	here	is	a	technique	in	Python	called
slicing.	And	what	slicing	does	is	it	allows	you	to	pull	out	parts	of	a	list.

So	if	you	want	the	first	item	in	a	list,	and	this	is	a	little	confusing	in	programming,	then
you	start	counting	from	zero.	So	it's	flowers,	left	bracket,	zero,	right	bracket.	That's	the
first	item	in	our	flowers	list.

So	in	programming,	counting	always	starts	from	zero.	So	in	this	case,	the	first	item	in	the
list	is	rose.	So	it's	flowers.

The	zeroth	 item	 is	 rose.	So	our	output	 is	 rose.	Now	what	 if	we	want	 the	second	 item?
Well,	if	the	first	item	is	zero,	the	second	item	is	one.



I	know	that's	confusing.	Programmers	are	weird.	They	start	counting	from	zero.

They	 say	 things	 like	 the	 zeroth	 item.	But	 you	do	get	used	 to	 it	 a	 little	 bit.	 So	 let's	 do
flowers,	and	then	a	left	bracket	for	our	slicing	syntax.

And	then	we	do	type	the	number	one,	and	then	we	do	a	right	bracket.	So	it's	flowers,	"F-
L-O-W,"	and	I'll	do	tab,	"E-R-S,	right	bracket,	I	meant	left	bracket,	one,	right	bracket."	So
it's	flowers,	left	bracket,	one,	right	bracket.

"Out,	left	bracket,	39,	right	bracket,	colon,	violet."	And	then	we	had	violet.	So	that's	the
second	item	in	the	list,	or	the	first	if	we	want	to	do	it	the	way	programmers.

The	zeroth	is	rose.	The	first	is	violet.	The	second	is	buttercup.

Or	as	a	normal	person	would	say	it,	the	first	is	rose,	second	violet,	third	buttercup.	But	in
programming,	counting	starts	from	zero.	And	you	can	also	put	in	a	range.

So	 let's	try	that	now.	So	 let's	do	flowers,	F-L-O-W-E-R-S,	 left	bracket.	And	 let's	do	zero,
zero,	colon,	two,	two,	right	bracket.	So	we	did	flowers,	left	bracket,	zero,	colon,	and	then
a	two,	and	then	a	right	bracket.	And	let's	see	how	many	we	get.	"Out,	left	bracket,	40,
right	bracket,	colon.

Out,	left	bracket,	40,	right	bracket,	colon,	left	bracket,	rose,	violet,	right	bracket."	So	it's
rose	and	violet.	And	this	does	get	a	little	confusing.

So	 we	 asked	 for	 this	 from	 the	 zeroth	 to	 the	 second.	 And	 it's	 a	 little	 confusing,	 but
basically	 the	second	number	has	 to	be	one	higher	 than	you	 in	 some	case	you	 think	 it
should	be,	which	 is	a	 little	hard	 to	get	used	 to.	But	basically,	we	wanted	 the	 first	 two
items.

So	 I	 flowers,	 left	 bracket,	 zero,	 colon,	 two,	 right	 bracket.	 And	 that	 sliced	 the	 first	 two
items	 in	 the	 list.	So	using	colon,	you	put	 two	numbers,	 the	 first	number,	 then	a	colon,
then	a	second	number.

(1:27:16	-	1:28:25)

And	 then	 it	 gives	 you	 the	 range	of	 those	 two	numbers.	But	 you	do	have	 to	make	 the
second	number	one	higher	than	maybe	you	think	it	should	be,	which	is	also	confusing.
And	 this	 is,	 believe	 me,	 even	 very	 experienced	 programmers	 get	 confused	 by	 the
counting	from	zero	and	things	like	the	second	numbers	being	higher.

There	 are	 good	 reasons	 why	 things	 are	 the	 way	 they	 are.	 But	 suffice	 to	 say,	 it	 is
confusing	 and	 it's	 unintuitive.	 And	 so	 there's	 a	 very	 common	 type	 of	 error	 in
programming	 called	 an	 off	 by	 one	 error,	 maybe	 the	 most	 common,	 one	 of	 the	 most
common	errors.



And	 it	basically	 just	means	you	 tried	 to	pull	out	some	data	and	you're	off	by	one.	You
missed	one.	So	this	is	something	to	keep	an	eye	out	for.

It's	very	common	to	mess	that	little	part	up.	But	you	can	always	go	back	and	fix	things
just	as	long	as	you	look	out	for	that	type	of	error.	So	we	learned	how	to	slice	from	a	list.

And	 I	want	 to	 show	you	one	other	 thing	 that's	going	 to	 come	 in	useful	when	we	 start
working	with	pandas.	And	it's	going	to	be	our	second	function	that	we	learned.	We	only
learned	one	function	so	far	that's	type.

We're	going	to	learn	another	function.	It's	going	to	be	called	len.	So	let's	go	ahead	and
use	it.

(1:28:29	-	1:28:46)

So	we're	typing	len,	left	parenthesis.	And	now	let's	give	it	our	flowers	variable.	So	it's	len,
l-e-n,	left	parenthesis,	flowers,	right	parenthesis.

(1:28:53	-	1:29:40)

So	the	output	was	three.	So	what	len	does,	it's	short	for	a	length.	And	we	get	the	length
of	a	list	or	whatever	else	we	pass	into	that	function.

And	 that's	 the	 programmer	 term	 when	 you	 kind	 of	 give	 something	 to	 a	 function	 by
putting	it	in	the	parenthesis.	We	say	we	passed	it	into	the	function.	And	then	there's	also
another	fancy	programmer	term,	which	I'm	sorry,	I	apologize	for	using	these	terms.

But	it	is	useful	to	learn	some	of	the	vocabulary	because	then	it	helps	you	to	look	things
up	or	to	sound	smart	when	you're	talking	to	people.	That's	one	of	the	main	reasons.	But
the	 word,	 when	 you	 pass	 something	 into	 a	 function,	 when	 you	 pass	 an	 object	 into	 a
function,	like	for	example,	we	gave	len	our	flowers	variable.

(1:29:41	-	1:31:12)

When	 you	 pass	 that	 object	 into	 the	 function,	we	 call	 that	 object	 an	 argument.	 So	 the
thing	 you	 give	 to	 a	 function	 is	 an	 argument.	 So	 that's	 a	 fancy	 programmer	 word	 for
something	you	pass	into	a	function.

So	our	flowers	is	the	argument	to	len.	And	then	we	get	back	three,	because	there's	three
items	in	our	list.	And	that	does	work	on	other	types	of	objects.

So	the	only	other	type	of	object	that	we've	learned	so	far	or	type	data	type	that	we've
learned	so	far	that	len	will	work	on	is	a	string.	So	we	can	do	len	and	pass	it	our	greeting
variable	that	we	defined	earlier.	And	then	the	argument	will	be	greeting.

So	we	did	len,	left	parenthesis,	and	let's	give	it	greeting.	So	it's	len,	left	paren,	greeting,



right	paren.	It	didn't,	blank,	let's	review	to	get	it,	"out	left	bracket	42	right	bracket	colon
five."

Five	is	the	output.	For	some	reason	it	didn't,	it	skipped	over	our	output	there.	Five	is	the
output	because,	and	what	 it	does	with	strings	 is	 it	counts	how	many	characters	are	 in
the	string.

So	greeting	is	hello,	h-e-l-l-o,	that's	five	characters.	So	it	told	us	how	many	characters	is
in	the	string,	which	can	be	pretty	useful	in	some	contexts.	It	tells	you	how	long	the	string
is.

(1:31:14	-	1:32:16)

There's	one	other	thing	I	want	to	teach	you	about	 lists,	but	we're	going	to	 learn	 it	 in	a
minute.	I	want	to	kind	of	come	back	around	and	we're	going	to	learn	about,	we	said	we
talk	about	objects.	So	let's	go	ahead,	we've	learned	the	basics	of	lists.

We'll	do	a	little	more	with	them	in	a	minute,	but	I	want	to	teach	you	one	little	thing.	We'll
take	a	little	break	from	lists,	come	right	back	to	it.	And	then,	so	we're	going	to	learn	this
next	thing,	which	is	about	true	and	false	and	called	conditionals.

Then	we're	going	to	 learn	a	 little	more	about	objects	and	how	to	 look	 inside	them	and
finish	off	learning	about	lists.	And	then	we're	going	to	take	10	minutes	and	make	a	little
application	 just	 to	 pull	 together	 all	 the	 things	 that	 we've	 learned.	 And	 then	 we'll	 be,
that'll	be	the	end	of,	more	or	less	the	end	of	our	lesson.

And	 that	 last	 bit,	 when	 we	 make	 the	 application,	 I'm	 going	 to	 teach	 you	 the	 most
important,	or	maybe	the	most	powerful,	let's	say,	little	bit	of	functionality	in	Python.	And
kind	of	 the	coolest	 in	a	way,	 just	 to	give	you	a	 little	 roadmap	of	what's	coming	up.	So
let's	clear	our	screen.

(1:32:19	-	1:35:06)

We're	up	to	our	40,	43rd	cell.	So	we've	have	entered	42	lines	of	Python	so	far.	So	very
auspicious.

So	 let's	 talk	 just	 very	 briefly	 about	 true	 and	 false	 and	 how	 those	 are	 useful,	 because
we're	going	to	be	using	those	a	bunch	in	the	pandas	workshop.	So	the	two	variables	that
we're	going	to	be	using	here	are	true	and	false.	But	we're	going	to	be	using	them	not	so
much	to	type	them	in	directly,	but	we'll	be	seeing	them	as	output	from	certain	kinds	of
lines	 of	 Python	 that	 we're	 writing	 in,	 certain	 kinds	 of	 Python	 statements	 that	 we're
writing	in.

So	let's	do	the	thing	where	we	try	it,	and	then	I'll	explain	it.	So	let's	try	this.	10	is	greater
than	5.	10	is	greater	than	5.	I	use	the	greater	than	symbol.	That's	near	the	bottom	right



of	your	keyboard.	So	I	said	10	greater	than	5,	and	the	output	was	true.	Okay,	now	let's
try	this.

11	greater	than	40.	11	is	greater	than	40.	False.

Okay,	so	I	wrote	11	is	greater	than	40.	False.	Okay,	let's	try	a	less	than.

Let's	do	0	 is	 less	 than	3.	Now	 think	about	 that.	 Is	0	 less	 than	3?	Let's	get	our	output.
True.

So	0	is	less	than	3.	Okay,	so	let's	do	one	last	one.	Let's	do	10.	Equals	equals.

Equals	equals.	That's	two	equal	signs.	Space.

10.	So	10	equals	equals	10.	"Out	left	bracket	46	right	bracket	colon.

True.	In	left	bracket	47	right	bracket	colon."	So	10	is	equal	to	10.

So	we	got	 true,	and	 let's	do	one	 last	one.	 "1	0	10,	space	equals	equals	space	1	1	11.
Space."

I	did	a	space	just	so	you	can	hear	the	11.	Out	left	bracket	47	right	bracket	colon.	False.

False.	10	is	not	equal	to	11.	Okay,	so	what	are	we	using	here?	These	are	statements.

(1:35:06	-	1:36:46)

So	a	statement	is	a	word,	and	it's	a	like	a	little	phrase	in	Python,	or	a	line	of	Python	is	a
statement.	Okay,	it's	actually	smaller	than	a	line.	You	can	have	multiple	statements	in	a
line,	but	a	state	Python	statement	is	a	little	piece	of	Python.

Okay,	 so	 that	 Python	 can	 evaluate,	 so	 or	 simplify.	 So	 what	 we've	 written	 here	 are	 a
couple	of	little	Python	statements.	So	they	are,	you	know,	for	example	10	is	greater	than
11.

False.	So	Python	is	evaluating	those.	Remember	it's	doing	that	process	that	Python	does
of	simplification.

It's	 evaluating	 them,	 and	 then	 it	 says,	 is	 this	 true	 or	 is	 this	 false?	 And	 if	 it's	 true,	 it
returns	 the	Boolean	data	 type	 true.	 If	 it's	 false,	 it	 returns	 the	Boolean	data	 type	 false.
Okay,	and	then	finally	also	the	one	that's	probably	the	most	used	is	equals	equals.

That	checks	if	something	is	equal	to	something	else.	So	10	equals	equals	10.	Is	10	equal
to	10?	And	the	result	of	that	you	could	probably	get	is	true.

10	is	equal	to	10.	Or	if	you	do	10	equals	equals	11,	then	you	get	false	because	10	is	not
equal	 to	 11.	 And	why	 is	 it	 equals	 equals	 and	 not	 just	 equals?	Why	 can't	 it	 just	 be	 10



equals	10?	The	answer	is	because	we	already	used	equals	for	something.

We	used	 it	 for	assigning	variables.	Remember	we	said	greeting	equals	hello,	or	we	did
flowers	 equals	 blah	 blah	 blah,	 rose,	 violet,	 buttercup.	 That	 is	 assignment,	 okay?	 It
assigns	a	variable,	so	it	gives	something	a	name.

(1:36:47	-	1:40:33)

This	is	not	giving	a	name,	it's	checking	if	something	is	equal	to	something	else,	okay?	So
the	reason	we	use	two	equals	for	this	is	because	the	one	equals	is	already	taken	and	it
does	 something	 else.	 These	 are	 called	 conditionals,	 and	 basically	 they	 are	 a	 way	 of
checking	for	truth	and	false.	Truth	or	falsehood	in	Python.

In	some	kinds	of	programming,	you	can	build	up,	hold	elaborate	programs	using	true	and
false.	So	you	can	check	if	a	whole	bunch	of	things	are	true	or	false,	and	then	go	through
and	be	like,	okay,	is	this	true?	Then	do	this.	If	this	is	true,	then	do	this.

If	 this	 is	 true,	 then	 do	 this.	 We're	 not	 going	 to	 go	 into	 that	 in	 this	 workshop,	 mainly
because	 that's	 more	 something	 you	 would	 do	 if	 you're	 developing	 applications.	 It
definitely	 is	 something	 you	 could	 do	 in	 advanced	 data	 science,	 but	 we're	 not	 really
getting	to	that	point	in	this	workshop	series.

We	will,	however,	be	using	these	equality	or	comparison,	these	conditional	statements,
these	true	and	false	type	statements,	 in	our	data	science	to	check	when	we	work	with
our	data	sets,	okay?	So	we	will	be	using	this	extensively.	But	if	you're	like,	well,	why	is
this	useful?	Well,	you'll	see	in	the	next	workshop,	and	it's	also	very	useful	when	you're
building	 applications	 and	 you	 need	 the	 application	 to	 do	 different	 things	 based	 on
different	kinds	of	behavior,	okay?	So	those	are	conditionals.	We're	not	going	to	use	them
anymore	in	this	workshop,	but	we	will	be	using	them	pretty	soon	after	starting	Pandas	in
the	next	workshop,	okay?	Now,	we're	going	to	now	talk	about	objects	and	how	to	 look
inside	them.

Once	we're	 finished	with	 objects	 and	working	with	 them,	we're	 going	 to	make	 a	 little
application,	pull	 everything	 together,	 and	 that	application	 is	going	 to	motivate	you	 for
the	next	workshop	series,	okay?	So	we're	kind	of	coming	up	close	to	the	end	here.	Let's
talk	about	objects.	So	we're	going	to	clear	the	screen.

This	is	a	great	time	to	talk	about	objects.	So	far	in	Python,	everything	we've	used,	all	the
integers,	 floats,	 booleans,	 lists,	 and	 strings,	 those	have	all	 been	objects.	And	actually,
even	our	functions	that	we've	used,	type	and	so	on,	those	are	objects.

So	everything	in	Python	is	an	object.	And	an	object	is	really,	it's	a	container,	okay?	It's	a
container,	and	it	has	a	bunch	of	stuff	inside	of	it.	Now,	I'm	going	to	tell	you	about	the	two
types	of	things	that	can	be	inside	objects	very	briefly,	and	then	we're	going	to	use	some
stuff.



We're	going	to	reach	into	an	object	and	use	some	stuff	that's	in	it,	and	maybe	that'll,	and
then	I'll	do	a	few	more	complicated	explanations,	but	okay.	An	object,	you	can	think	of	it
as	a	box	that	contains	other	data	and	functions,	okay?	So	 it's	a	box,	every	object,	and
that's	everything	in	Python,	every	integer,	every	float,	every	string,	 is	a	box	that	has	a
bunch	of	other	stuff	 inside	of	 it,	okay?	So	who	knew,	right?	So	the	two	types	of	 things
you're	going	 to	 find	 in	 inside	an	object	are,	one,	 functions,	okay?	And	 then	 two,	other
things	that	aren't	functions,	but	you	can	kind	of	think	of	those	as	like	variables,	they're
other	data,	okay?	So	functions	and	other	data.	And	there's	special	words,	programmery
words	we	use	when	we	talk	about	functions	and	other	data	that	are	inside	objects.

(1:40:33	-	1:45:10)

So,	 and	 those,	 let	me	 try	 to	 teach	 you	 those	 special	 words	 and	 then	 I'll	 use	 them	 as
much	as	possible	so	you	get	a	hang,	an	ear	for	those	words	as	we	move	forward.	So	in
an	object,	 if	you	have	a	function	in	the	object,	we	use	a	special	word,	that's	a	method,
okay?	So	a	method	is	a	function	inside	an	object.	And	then	if	you	have	other	data	in	an
object,	then	we	use	a	special	word,	attribute.

So	methods	 and	 attributes,	 those	 are	 the	 two	 types	 of	 things	 that	 you	 find	 inside	 an
object,	okay?	And	they're	really	just	fancy	words,	a	method	is	a	function	inside	an	object,
an	attribute	 is	 other	data	 inside	an	object,	 okay?	And	you	 can	 kind	of	 think	of	 it	 as	 a
variable	inside	an	object,	but	that	is	not	a	correct	way	to	say	it,	but	you	can	think	of	it
that	way.	Alright,	so	what	we're	going	to	do	is	we're	going	to	use	a	method	on	an	object
and	we're	going	 to	add	a	 flower	 to	our	 flowers	 list,	okay?	So	every	 list	has	a	bunch	of
methods	inside	of	it,	okay?	And	we're	going	to	learn	just	one	of	those	methods,	okay?	So
let's	 type	 the	 flowers	 variable,	 "f-l-o-w-e-r-s",	 and	 you	 could	 use	 tab	 for	 that,	 you
probably	should.	And	now	we	wrote	flowers,	f-l-o-w-e-r-s,	and	now	don't	put	a	space,	just
do	a	dot,	period,	full	stop,	however	you	say	that,	wherever	you	are,	you	know,	a	period
or	full	stop.

"Flowers,	 dot."	 Dot,	 okay?	 And	 then	 now	 type	 append,	 a-p-p-e-n-d.	 "A-p-p-e-n-d."	 And
now	a	left	parenthesis,	because	this	is	a	method,	it's	like	a	function	inside	of	our	flowers
list.	"Append,	left	paren."	And	now	let's	put,	give	it	another	quote	quote.

So	 let's	 type	 in	 a	double	quote.	And	when	 I,	 during	 the	workshop,	when	 I	 asked	 for	 a
suggestion	 for	 flowers,	people	suggested	some	 flowers,	but,	but	 I	heard	someone	said
Lily.	 And	 I	 have	 a	 newborn	 baby	 here	 at	 home,	 and	 her	 name	 is	 Lily,	 so	 I	 was	 very
excited	about	that.

So	 let's	 go	with	 Lily	 for	 our	 last	 flower.	 "L-I-L-Y,	 Lily,	 quote."	 And	 then	 let's	 do	 a	 right
parenthesis.

"Right	paren."	So	 that's	 flowers,	dot,	append,	 left	parenthesis,	quote,	 Lily,	quote,	 right
parenthesis.	"In	left	bracket,	49	right	bracket,	colon."



And	there	was	no	output,	but	if	we	look	at	our	flowers	variable,	"F-L-O-W-E-R-S,	out	left
bracket,	49	right	bracket,	colon,	left	bracket,	rose,	violet,	butter	cu,	p,	lily,	right	bracket."
Rose,	violet,	buttercup,	and	lily.	Okay,	it	was	on	another	line,	that's	why	there	was	a	little
pause	there.

So,	so	we	appended	to	the	end	of	the	list,	or	we	added	to	the	end	of	the	list,	the	new,	a
new,	a	new	object,	which	is	a	string,	lily.	So	now	we	have	rose,	violet,	buttercup.	And	if
we	did	len	on	the	list	now,	L-E-N,	and	we	gave	it	the	list.

"L-E-N,	len,	left	paren,	F-L-O,	float,	W-E-R-S,	right	paren.	Len	flowers,	out	left	bracket,	50
right	bracket,	colon,	four."	We	have,	we	get	four.

We	have	now	four	items	in	the	list,	instead	of	three,	because	we	appended	something	to
the	end	of	it.	So	we,	we,	if	we	want	to	use	a	method	in	an	object,	we	use	that	dot	syntax,
okay.	So	we	do	flowers	dot	whatever,	flowers	dot	append,	we'll	add	something	to	the	end
of	the	flowers	list,	okay.

So,	and	methods	often	work	on	the	object	that	they're	contained	in.	So	the	lists	and	lists
have	a	number	of	methods	that	are	quite	useful.	And	so	let's,	I'm	going	to	teach	you	one
more	function,	and	it,	it	will	tell	you	what,	what	attributes	and	methods	are	inside	a	list.

So	what	are	inside	an	object.	So	it	will	look	inside	an	object,	and	it	will	tell	you,	give	you
a	big	long	list	of	what	is	inside	it.	And	I	will	say	this,	the	output	from	this	function	is	very
long.

So	you	may	get	a	little	overwhelmed.	So	I	would	say,	use	the	review	functionality	to	tell
what's	inside	it.	Don't	listen	to	the	whole	output.

(1:45:11	-	1:46:09)

So	 the	 new	 function,	 we,	 this	 is	 the	 third	 function	 we	 learned.	 We	 learned	 type,	 we
learned	 len.	Now	 let's	 learn	dir,	dir,	d,	 for	directory,	dir,	 left	parenthesis,	and	 let's	 just
use	our	flowers	again,	f-l-o-w-e-r-s,	flowers.

I	press	tab	to	fill	it	in.	So	it's	d-i-r,	left	parenthesis,	flowers,	right	parenthesis.	Did	I	type
the	right	parenthesis?	No	I	didn't.	"Copy.	Count.

Extend.	Index."	So	we're	hearing	some	of	the,	the,	the	methods	inside	the	list.

So	the	things	you	can	do	with	the	list.	Copy.	Index.

Extend.	"Insert.	Pop.

Remove.	Reverse"	So	I	heard	some	interesting	ones	there.

Pop	is	an	interesting	one.	We	won't	go	into	that	one,	but	it	pops	something	off	the	end	of



the	list.	But	let's	try	reverse.

(1:46:09	-	1:48:33)

That's	an	interesting	one.	So	I	just	heard	it.	It	sounds	interesting.

Let's	try	it.	Let's	do	flowers.reverse,	"f-l-o-w,"	and	let's	use	filling	it	in,	the	tab,	press	tab
to	fill	in,	"e-r-s,"	flowers,	dot,	reverse,	"r-e-v,"	and	you	can	actually	fill	this	in	too.	I	typed
in	r-e-v.	Let's	see	if	we	can	fill	it	in.	Reverse.

So	 it's	 flowers.reverse,	 left	parenthesis,	and	then	 it	doesn't	 take	any	arguments,	okay?
There's	nothing	that	goes	inside	the	parenthesis.	So	it's	just	going	to	be	left	paren,	right
paren,	in	left	bracket	53,	right	bracket	colon,	and	there's	no	output.	But	if	we	check	our
list,	 "f-l-o-w-e-r-s,	 flowers,	 out	 left	 bracket	 53,	 right	 bracket	 colon,	 left	 bracket	 lily,
buttercup,	violet,	t,	rose,	right	bracket."

So	it's	lily,	buttercup,	violet,	rose.	It	reversed	our	list.	So	that's	kind	of	cool.

So	methods	are	functions	that	live	inside	of	objects	and	allow	you	to	do	something	with
that	object.	Usually	they	will	work	upon	that	object,	not	always,	but	often	they	will	work
upon	that	object.	Every	object	has	methods	and	attributes	in	it,	or	let's	say	almost	every
object.

But	in	practice,	every	object	has	methods	and	attributes	inside	it.	Methods	and	attributes
are	 different	 for	 different	 data	 types.	 So	 integers	 will	 have	 different	 methods	 and
attributes	than	lists	will	have	different	methods	and	attributes	from	strings.

And	strings,	for	example,	will	have	methods	to	allow	you	to	find	strings	inside	of	strings,
or	 to	 uppercase	 the	 string,	 or	 to	 do	 things	 like	 that,	 to	 do	 things	 that	 are	 useful	 for
strings.	So	you	can	kind	of	 think	of	methods	as	useful	 tools	 in	 the	 toolbox	 that	 is	 that
object.	They	allow	you	to	do	things	with	the	object.

So	we're	kind	of	coming	up	to	the	end	of	this	workshop.	We're	just	going	to	do	two	more
things.	We're	going	to	make	a	little	very	small	application	that	will	inspire	you	to	come	to
the	next	workshop,	or	check	out	the	next	workshop,	and	to	inspire	you	or	motivate	you
to	do	more	Python,	the	little	motivational	quotes.

(1:48:33	-	1:48:45)

And	then	I'll	show	you	how	to	save	your	IPython	session.	And	then	that	will	be	the	end	of
our	 non-visual	 Python,	 the	 first	 workshop	 in	 this	 series.	 So	 let's	 create	 our	 little
application.

(1:48:45	-	1:49:31)

And	to	do	that,	 I'm	going	to	teach	you	maybe	the	coolest	 feature	of	Python,	or	maybe



the	most	powerful	feature	of	Python.	So	let's	clear	our	screen	to	kind	of	clear	our	heads.
And	we're	in	a	new	mode	here.

We're	going	to	be	creating	our	little	application.	"In	left	bracket	54,	right	bracket	colon."
OK,	we're	all	ready.

I	hit	control	L	to	clear	the	screen.	And	now	let's	type	this.	Type	this,	and	I'll	explain	what
it	is.

Type	import.	"I-M-P-O-R-T.	Import.

Space.	R-A-N-D-O-M.	Random.

Space."	 So	 it	 was	 import	 random.	 And	 I	 did	 space	 there	 just	 so	 you'd	 hear	 the	 word
random.	Import	random.	And	again,	there's	no	output.	But	something	happened	behind
the	scenes.

(1:49:32	-	1:49:44)

And	 that	 is	 that	 there's	 a	 new	object	 that	we	have	now,	 random.	 It's	 an	 object	 called
random.	And	let's	just	use	our	type	function	on	it	just	to	see	what	it	is	now.

(1:49:46	-	1:52:33)

I	filled	it	in	with	tab,	but	you	didn't	hear	it.	So	I'm	going	to	try	it	again.	"Left	paren.

R-A-N-D-O-M.	Random.	Right	paren."

So	 type,	 left	 paren,	 random,	 right	 paren.	 Let's	 see	 what	 data	 type	 this	 is.	 "Out	 left
bracket	55,	right	bracket	colon,	module."

It's	 a	module,	 OK?	 So	what	we	 did	when	we	 did	 import	 random	 is	 we	 imported	what
Python	calls	a	module.	And	a	more	general	word	for	it	that	programmers	use	is	a	library.
And	when	we	do	 that,	basically	we	pull	 in	a	whole	bunch	of	code	 that	somebody	else,
someone	usually	pretty	on	 the	ball	 and	who	knows	what	 they're	doing,	wrote	 to	allow
you	to	do	something	specific.

In	 this	 case,	 when	 we	 import	 random,	 we	 imported	 a	 whole	 toolbox	 of	 tools	 that	 is
dedicated	 to	working	with	 randomness	 and	 to	 create	 random	numbers	 and	 to	 choose
random	 things	 and	 so	 on,	 which	 is	 a	 pretty	 cool	 library	 or	 module	 that	 comes	 with
regular	vanilla	CPython,	not	even	an	Anaconda	module.	But	we	have	 it	available	 to	us
here.	And	it's	just	an	object	like	any	other.

And	you	use	the	dot	syntax	that	we	learned	the	same	way	we	did	flowers.append	to	use
that	method.	We	 use	 random	 dot	 whatever	 to	 access	 functions	 inside	 of	 this	module
object.	And	a	module	is	really	 just	an	object	to	contain	a	whole	bunch	of	functions	and



other	objects	and	stuff	that	we	can	use	in	our	own	code	to	pull	stuff	into	our	own	code.

So	you	can	kind	of	think	about	it	as	a	toolbox	object.	So	really	the	module	data	type,	it's
kind	of	the	sixth	data	type	that	I	mentioned	early	in	the	lesson.	So	it's	kind	of	that	special
data	type	that	I	was	talking	about.

But	you	can	kind	of	think	about	it	as	a	grab	bag	toolbox	data	type.	And	we	can	reach	into
it.	And	we	don't	call	them	methods.

When	we	reach	into	a	module	and	we	do	things,	we	do	still	call	them	functions	and	so
on,	which	is	confusing.	But	in	this	case,	if	we	use	a	function	that's	in	a	module,	we	do	still
call	it	a	function.	So	make	of	that	what	you	will.

But	 let's	 go	 ahead	 and	write	 our	 little	 application.	 So	 what	 we're	 going	 to	 do	 is	 we'll
create	a	blank	list,	an	empty	list.	And	then	we're	going	to	use	the	append	method	to	add
three	motivational	sayings	to	the	list.

And	 then	we're	going	 to	use	 the	 random	module	 to	pull	a	 random	motivational	saying
out.	So	let's	go	ahead	and	do	that	now.	So	we	already	imported	our	random	module.

Let's	now	create	an	empty	 list.	So	 I	cleared,	which	 I	didn't	necessarily	need	to	do.	But
let's	 do,	 let's	 type,	 I'm	 going	 to	make	 the	 variable	 name	motivational	 quotes,	which	 I
know	is	a	long	variable	name.

(1:52:33	-	1:52:47)

But	there's	nothing	wrong	with	a	 long	variable	name,	motivational	 line.	And	where	you
heard	 line	 there,	 that	 was	 me	 doing	 an	 underscore.	 So	 it's	 going	 to	 be	 motivational
underscore	quotes.

(1:52:49	-	2:05:12)

And	 if	 you	 want	 to	 have	 a	 space	 in	 your	 variable	 name,	 then	 you	 want	 to	 use	 an
underscore.	A	space	is	not	going	to	work.	You	can't	have	a	space	in	your	variable	name.

You	 can	 have	 an	 underscore.	 Okay,	motivational	 quotes	 equals.	 And	 then	 just	 do	 left
square	bracket,	right	square	bracket.

So	a	list	with	nothing	in	it.	So	it's	motivational	underscore	quotes,	space,	equals,	space,
left	bracket,	right	bracket.	And	press	enter.

And	now	we	have	a	variable	called	motivational	quotes.	If	we	type	it	in	by	itself	on	a	line,
"M-O-T-I,"	 and	 I'll	 let	 it	 fill	 in.	 "In	 left	 bracket	 57	 right	 bracket	 colon	motivational	 line
quotes.	Out	 left	 bracket	 57	 right	 bracket	 colon	 left	 bracket	 right	 bracket.	 Left	 bracket
right	bracket."	That	was	the	output.



So	it's	an	empty	list.	That's	a	left	bracket	right	bracket	with	nothing	in	it.	Okay,	and	so
we	 now	 have	 a	 motivational,	 an	 empty	 list	 assigned	 to	 the	 motivational	 underscore
quotes	variable.

So	now	let's	add	three	items	to	the	list	using	our	append	method.	So	we're	going	to	do
motivational	underscore	quotes	dot	append.	And	then	we're	going	to	pass	it,	you	know,
we're	going	to	do	our	parentheses.

We'll	pass	it	a	string	with	our	motivational	quote.	So	let's	"M-O-T-I"	motivational	"in	left
bracket	58	right	bracket	colon	motivational	line	quotes"	motivational	quotes	dot	append
left	parenthesis.	And	now	let's	do	a	double	quote.

Sorry	 I	 talked	over	 that.	So	 it's	motivational	underscore	quotes	 left	parenthesis	double
quote.	And	now	let's	type	a	quote.

So	let	I'll	do	Hey	I	am	getting	the	hang	of	this	Python	skill!	getting	the	hang	of	hey	I	am
getting	the	hang	of	this	python	stuff	exclamation	mark	stuff	and	then	do	a	double	quote
and	 then	 do	 a	 left	 sorry	 a	 right	 parenthesis.	 So	 it	 should	 be	motivational	 underscore
quotes	 dot	 append	 left	 parenthesis	 double	 quote	 type	 your	 quote	whatever	 you	want
then	another	double	quote	then	the	right	parenthesis.	Okay	so	we're	appending	a	string
to	the	end	of	our	empty	list.	I	got	a	I	got	an	error	I	mistyped	something.

Let's	type	it	I'm	going	to	just	type	it	again	motivational	quotes	dot	append	just	typing	it
fast.	Okay	so	uh	I	and	now	we	can	check	the	list.	"M-O-T	in	left	bracket	60	right	bracket
colon	motivational	line	quotes."

We're	just	checking	what's	 in	the	list	by	putting	motivational	quotes	the	variable	name
on	a	 line	by	 itself	 "left	bracket	60	 right	bracket	colon	out	 left	bracket	60	 right	bracket
colon	left	bracket	hey	I	am	getting	the	hang	of	this	python	stuff	right	bracket."	Okay	so
we	have	one	item	in	let's	add	two	more	really	quick	so	let's	do	motivational	quotes	dot
append	quote	and	I'll	say	um	uh	I	eat	bugs	for	breakfast	but	not	those	kinds	of	bugs	so	I
did	motivational	quotes	dot	append	open	parenthesis	quote	I	eat	bugs	for	breakfast	but
not	 those	 kinds	 of	 bugs	 close	 quote	 close	 parenthesis	 and	 let's	 add	 one	 more
motivational	quotes	dot	append	space	um	and	let's	say	um	when	does	the	data	science
stuff	 start	 I	 don't	 know	 how	motivational	 that	 is	 but	 the	 answer	 is	 next	 week	 "in	 left
bracket	63	right	bracket	colon"	okay	so	now	we	have	three	um	strings	appended	to	our
list	three	strings	in	the	motivational	quotes	list	so	we	have	our	you	know	three	phrases
or	whatever	now	let's	pick	a	random	phrase	from	the	list	okay	so	let's	do	we're	going	to
use	 random	 the	 library	 random	dot	 choose	 it's	 choice	 sorry	 random	dot	 choice	 so	 it's
random	dot	choice	and	then	we'll	do	it	sounded	like	I	spelled	something	wrong	so	let's
start	 again	 random	 dot	 choice	 left	 parenthesis	 and	 then	 let's	 give	 it	 our	motivational
quotes	 list	 so	 it's	 random	 dot	 choice	 left	 parent	 motivational	 quotes	 variable	 right
parenthesis	 "out	 left	 bracket	 63	 right	 bracket	 I	 eat	 bugs	 for	 breakfast	 b-u-t	 not	 those
kinds	of	bugs"	I	eat	bugs	for	breakfast	but	not	those	kinds	of	bugs	so	every	time	we	run



that	line	random	dot	choice	left	parent	motivational	quotes	right	parent	it	should	pick	out
a	random	quote	from	our	list	so	we've	got	a	little	almost	like	a	little	app	so	every	time	we
you	can	now	run	that	line	over	and	over	but	you	can	press	the	up	button	"colon	quotes
right	 parent	 in	 left	 bracket	 64	 right	 bracket	 colon	 random	 dot	 choice	 left	 paren
motivational	line"	so	when	you	press	up	it	fills	in	the	line	that	we	previously	ran	and	then
you	press	enter	"out	left	bracket	64	right	bracket	colon	out	left	bracket	64	right	bracket
colon	when	does	the	data	science	stuff	start	when	does	the	data	science	stuff	start"	so
every	time	we	run	this	line	it'll	pick	out	a	new	one	probably	it'll	be	the	same	one	"out	left
bracket	65	right	bracket	colon	when	does	the	data	science	stuff"	so	every	time	we	run
the	line	it	will	print	out	a	new	random	motivational	quote	from	our	list	so	hopefully	you
know	 you	 can	 put	 something	 a	 little	motivational	 for	 yourself	 in	 there	 and	 it's	 a	 little
application	they've	written	for	yourself	and	you	might	be	say	to	yourself	uh	Patrick	is	this
really	an	application	and	I	would	say	the	answer	is	you	know	most	applications	are	what
programmers	 call	 crud	 applications	which	 stands	 for	 create	 read	 update	 delete	which
basically	means	they	just	stick	stuff	in	a	database	and	then	they	pull	it	out	and	basically
what	 we	 did	 here	 was	 we	 created	 a	 database	 with	 three	 items	 in	 it	 and	 now	 we're
randomly	pulling	them	out	and	so	really	what	we've	done	here	is	we've	created	a	crud
application	 which	 is	 what	 95	 percent	 of	 applications	 are	 so	 yes	 you	 have	 created	 an
application	here	 it's	 it's	 not	 the	most	 complicated	application	 in	 the	world	but	 it	 is	 an
application	so	so	you	know	you	can	kind	of	pat	yourself	on	the	back	a	little	bit	there	all
right	so	this	really	is	the	end	of	the	workshop	so	I	hope	that	you	have	you	know	enjoyed
spending	a	little	time	in	the	beginning	of	you	know	stages	of	python	remember	you	are	a
programmer	now	and	I	 just	want	to	say	you	know	we	talked	about	motivational	quotes
you've	created	your	motivational	quotes	I	just	want	to	very	briefly	give	you	a	few	words
of	motivation	myself	which	is	to	say	you	know	my	background	is	10	years	ago	I	started
my	journey	of	 learning	python	and	you	know	I'm	visually	 impaired	at	that	time	I	had	a
little	more	vision	but	I	you	know	still	you	know	very	limited	vision	and	I	had	always	my
entire	 life	 felt	 like	 I	 was	 like	 struggling	 with	 computers	 because	 computers	 are	 really
they	 felt	 like	 they	were	made	 for	 other	 people	 they	weren't	made	 for	me	 they	 didn't
allow	me	 to	do	 they	weren't	 built	 for	 people	with	 a	 visual	 impairment	 and	 they	didn't
make	things	easy	they	you	know	like	they	didn't	make	things	the	you	know	like	with	lots
of	 hotkeys	 or	 however	 I	 or	 with	 uh	 like	 large	 text	 or	 with	 screen	 reader	 support	 or
whatever	they	just	weren't	built	for	people	like	me	that's	how	it	felt	for	a	long	time	and
when	 I	 started	 learning	programming	 I	 found	 that	 I	 could	make	 functionality	 the	way	 I
want	I	needed	it	or	I	wanted	it	and	that	was	very	empowering	and	and	really	allowed	me
to	completely	change	my	my	 relationship	with	 the	computer	and	you	know	 I	was	 I	 for
example	 the	 first	 one	 of	 the	 first	 real	 quote-unquote	 things	 I	 did	 with	 python	 after	 I
started	learning	it	was	that	I	used	a	website	that	had	audio	books	on	it	audio	files	and	I
and	 it	was	 very	difficult	 to	 access	 very	 inaccessible	website	 and	 I	 found	 that	when	 I	 I
could	write	a	piece	of	a	little	program	in	python	that	would	access	the	website	download
all	the	data	go	through	the	data	from	the	website	and	then	pull	out	what	I	needed	and	I
could	run	it	every	day	and	pull	out	the	new	information	and	it	was	very	empowering	to



have	it	be	able	to	parse	that	data	and	I	didn't	need	to	access	the	website	in	the	sighted
way	at	all	 I	could	just	 just	access	it	the	way	I	wanted	to	access	it	and	so	I	 just	want	to
show	you	one	other	thing	which	you	know	and	so	basically	that's	the	essentially	end	of
our	 workshop	 but	 I	 will	 say	 you	 know	 do	 think	 about	 seriously	 about	 becoming	 a
programmer	because	I	think	there	should	be	more	programmers	in	the	world	we	it	helps
us	make	applications	more	accessible	it	makes	us	more	visible	and	it	empowers	us	to	to
do	new	cool	things	okay	so	I	just	want	to	show	you	one	last	thing	which	is	how	to	save
data	in	the	in	your	it's	to	save	this	session	that	we've	done	together	okay	and	we	have	a
crying	 baby	 in	 the	 background	 so	 so	 this	 will	 definitely	 be	 the	 last	 thing	 so	 we'll	 do
percent	save	and	we	have	to	check	what	our	last	line	was	so	you	need	to	know	what	the
last	 line	was	that	we	entered	"in	left	bracket	66"	so	it	was	66	so	we	subtract	one	from
that	you	wanted	to	get	65	so	you'll	need	to	know	that	for	this	so	we	do	percent	percent
save	save	and	I'll	call	this	um	non-visual	underscore	session	so	it's	percent	safe	then	a
file	name	um	percent	save	space	non-visual	underscore	session	session	and	then	space
and	then	you	have	to	enter	the	number	of	lines	you	want	to	save	so	we're	going	to	do
one	one	hyphen	65	and	I'm	going	to	press	enter	motivational	line	quotes	and	now	that
should	 have	 saved	 in	 your	 home	 folder	 so	 users	 forward	 slash	 your	 name	 your	 entire
session	that	you've	had	today	so	it's	percent	save	space	a	file	name	space	and	then	one
to	the	last	line	okay	so	we	had	66	we	were	on	66	there	so	we	had	entered	65	lines	so	I
did	 one	 to	 65	 okay	 um	 that's	 the	 end	 of	 our	 session	 um	 thank	 you	 and	 I'm	 looking
forward	to	seeing	you	all	 in	the	Python	session	um	next	week	or	you	know	whenever	if
you're	watching	the	recording	so	have	a	great	um	have	a	great	time	playing	around	with
Python	and	remember	I'm	Patrick	Smyth	um	at	iotaschool,	iotaschool.com	you	can	send
an	 email	 to	 me	 at	 patrick@iotaschool.com	 if	 you	 have	 any	 questions	 thank	 you	 very
much


